Rutin and quercetin in common buckwheat and Tartary buckwheat flour / Rutin in kvercetin v moki iz navadne in tatarske ajde

2020 ◽  
Vol 61 (2) ◽  
pp. 257-280 ◽  
Author(s):  
Blanka Vombergar

Samples of common buckwheat (Fagopyrum esculentum Moench) and Tartary buckwheat (F. tataricum Gaertn.) were used in milling, sieving and analysing experiments. Rutin and quercetin were analysed in buckwheat samples, in milling and sieving fractions and after the contact of flour particles with water, to simulate conditions in dough. The concentration of rutin in Tartary buckwheat was 1.17–1.75% in dry matter, while it was only 0.003% in dry matter of common buckwheat. Thus it is in Tartary buckwheat in this case 400 times more rutin in comparison to common buckwheat. In buckwheat dough with the time after mixing flour and water, the concentration of rutin diminished, the time needed was different in common and Tartary buckwheat dough, and quercetin appeared instead. Immediately after the direct contact of flour particles of common and Tartary buckwheat with water the rutin concentration changed from 11.7 to 0.79 mg/100 g dry matter (DM), and quercetin appeared (5.7 mg/100 g DM), in comparison in initial flour the concentration of quercetin was only 0.6 mg/100 g DM. In common buckwheat dough the apparent concentration of rutin changed from initial 0.0258 mg/g to 0.0263 mg/g DM, and after one hour after the beginning of contact of flour with water rutin concentration changed to only 0.0005 mg/g DM).  Keywords: common buckwheat, Tartary buckwheat, flavonoids, rutin, quercetin, milling, dough   Izvleček Raziskovali smo vzorce navadne ajde (Fagopyrum esculentum Moench) in tatarske ajde (F. tataricum Gaertn.). Vzorce smo mleli, presejavali, pripravljali testo (mešanica moke in vode) ter  izmerili vsebnost rutina in kvercetina. Tatarska ajda ima bistveno višjo vsebnost rutina kot navadna ajda. Vsebnost rutina v raziskovani tatarski ajdi je 1,17–1,75 % v suhi snovi (SS), v navadni ajdi ´siva´ pa le 0,003 %. V tatarski ajdovi moki smo izmerili okoli 400x več rutina kot v navadni ajdovi moki. Pri neposrednem stiku ajdove moke z vodo težko najdemo vzporednice med  tatarsko ajdo in navadno ajdo in dogajanji v povezavi z rutinom v testu.  Koncentracija rutina v testu se po določenem času (različen čas pri navadni in tatarski ajdi – 5 minut do 2 uri) močno zniža, pojavi se kvercetin. Pri neposrednem stiku moke z vodo se vsebnost rutina v tatarski ajdovi moki močno zniža  že po prvih 5 minutah delovanja (z 11,7 na 0,79 mg/100 g SS), pojavi pa se kvercetin (5,7 mg/100 g SS), v vzorcu moke ga je le 0,6 mg/100 g SS. Pri neposrednem stiku moke iz navadne ajde z vodo vsebnost rutina v moki (vzorec S) naraste v prvi uri z začetnih 0,0258 mg/g na 0,0263 mg/g SS (v začetnem času nekoliko manj enakomerno), v drugi uri stika moke in vode pa koncentracija rutina močno pade (na 0,0005 mg/g SS).  Ključne besede: navadna ajda, tatarska ajda, flavonoidi, rutin, kvercetin, mletje, testo

Fagopyrum ◽  
2020 ◽  
Vol 37 (1) ◽  
pp. 11-21
Author(s):  
Blanka Vombergar ◽  
Vida Škrabanja ◽  
Mateja Germ

Common buckwheat (Fagopyrum esculentum Moench) and Tartary buckwheat (F. tataricum Gaertn.) samples were used in milling, sieving and analysing experiments. Flavonoids were analysed in buckwheat samples, in milling and sieving fractions and after the contact of flour particles with water, to simulate conditions in dough. In Tartary buckwheat, there was even more than 100-times higher content of flavonoids flour in comparison to respective fractions of common buckwheat flour. The highest concentration of flavonoids in milling fractions of Tartary buckwheat flour (granulation over 100 |im up to including 1000 |im) was established as 3.5-4.5% flavonoids/DM. Immediately after the direct contact of flour particles of common and Tartary buckwheat with water the apparent concentration of flavonoids rose (even for 100% or more) in the first 5-30 minutes of contact. After one hour, due to the degradation of flavonoids, their concentration decreased. Concentration of flavonoids are after 24 hours of contact of flavonoids with water in all milling fractions lower in comparison to the value after first 5 minutes of contact with water.


Fagopyrum ◽  
2021 ◽  
Vol 38 (2) ◽  
pp. 43-53
Author(s):  
Blanka Vombergar

The concentration of flavonoids rutin and quercetin in flours of common and Tartary buckwheat was investigated. In Tartary buckwheat, concentration of rutin is much higher compared to common buckwheat. In Tartary buckwheat it was measured 1.17 to 1.75% rutin in dry matter, while in common buckwheat it was only 0.003%. After direct contact of buckwheat flour with water, different biochemical activities in Tartary buckwheat developed with rutin. After the time (5 minutes or two hours), the concentration of rutin is in the flour-water mixtures much lowered, and quercetin appeared. However, after quick initial changes, some rutin remained in flour-water mixtures even after 24 hours. In any way, after 24 hours of direct contact of flour particles with water, the concentration of quercetin is higher than that of rutin. It is established that the concentration of rutin in flour-water mixtures is the result of two processes. One is the release of rutin from grain structures and its dissolving in water, and the second is the release of rutin degrading enzymes from grain structures and their activity in solution. 


2020 ◽  
Vol 61 (1) ◽  
pp. 75-87
Author(s):  
Lea Lukšič ◽  
Aleksandra Golob ◽  
Maria Mravik ◽  
Mateja Germ

Buckwheat became a pan-Eurasian crop, when it expanded via Himalaya to Europe. Common buckwheat is one of the oldest domesticated crops in Asia, while Tartary buckwheat is still thriving as a wild or weedy plant. Buckwheat belongs to dicotyledonous crops that can tolerate poor soils and extreme environment conditions. Buckwheat grows on high elevation, where the intensities of UV radiation are usually high. Buckwheat is a fast-growing plant rich in flavonoids, which absorb UV radiation and have an antioxidant potential. Flavnoids have positive effect also on human health. Besides common buckwheat flour, Tartary buckwheat flour is more and more used in preparing dishes, due to its much higher content of flavonoids rutin and quercetin compared to common buckwheat. Therefore, the studies on how the technological procedures of preparing Tartary buckwheat bread affect the content, availability and efficacy of flavonoids in buckwheat bread have been made. Buckwheat is commonly used in the dishes in Japan (soba noodles), China (buckwheat noodles), Korea (buckwheat noodles), Italy (buckwheat polenta), France (galettes), Slovenia (kasha, žganci). Common buckwheat and Tartary buckwheat are plants suitable for designing foods with good functional value and healthy features. Therefore, it has been determined that different technological procedures, such as hydrothermal treatment of grain, sourdough fermentation, dough preparation and baking influences the availability and changes in the content of flavonoids, rutin and quercetin and antioxidant activity in sour bread and food products, made with buckwheat flour. Key words: Common buckwheat, Tartary buckwheat, sourdough bread, rutin, quercetin, flavonoids, UV absorbing compounds   Izvleček Ajda je postala vseevrazijska kultura, ko se je preko območja Himalaje razširila v Evropo. Navadna ajda je ena najstarejših gojenih rastlin v Aziji, medtem ko tatarska ajda še vedno uspeva tudi kot divja ali plevelna rastlina. Ajda spada med gojene dvokaličnice, ki lahko prenašajo slaba tla in ekstremne razmere v okolju. Ajda raste na visoki nadmorski višini, kjer je intenziteta ultravijoličnega sevanja običajno visoka. Ajda je hitro rastoča rastlina, bogata z flavonoidi, ki absorbirajo UV sevanje in imajo antioksidativni potencial. Flavonoidi pozitivno vplivajo tudi na zdravje ljudi. Poleg moke iz navadne ajde se moka iz tatarske ajde vse pogosteje uporablja pri pripravi jedi, ker ima v primerjavi z navadno ajdo veliko večjo vsebnost flavonoidov kot sta rutin in kvercetin. Zato so bile narejene študije o tem, kako tehnološki postopki priprave kruha iz tatarske ajde vplivajo na vsebnost, razpoložljivost in učinkovitost flavonoidov v ajdovem kruhu. Ajdo je zelo pogosto uporabljajo v jedeh na Japonskem, na Kitajskem, Koreji, v Italiji, v Franciji, Sloveniji. Navadna ajda in tatarska ajda, sta rastlini primerni za pripravo živil z dobro funkcijsko vrednostjo in lastnostmi ugodnimi za zdravje. Ugotovljeno je bilo, da različni tehnološki postopki, kot so hidrotermična obdelava zrnja, mlečnokislinska fermentacija, priprava testa in peka, vplivajo na dostopnost in spremembe v vsebnosti flavonoidov, rutina in kvercetina in antioksidativno aktivnost kislih kruhov in prehranskih izdelkov pripravljenih iz ajdove moke . Ključne besede: navadna ajda, tatarska ajda, kruhi s kislim testom, rutin, kvercetin, flavonoidi, UV absorbirajoče snovi


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1142
Author(s):  
Alena Vollmannová ◽  
Janette Musilová ◽  
Judita Lidiková ◽  
Július Árvay ◽  
Marek Šnirc ◽  
...  

Common buckwheat (Fagopyrum esculentum Moench) is a valuable source of proteins, B vitamins, manganese, tryptophan, phytochemicals with an antioxidant effect, and the natural flavonoid rutin. Due to its composition, buckwheat supports the human immune system, regulates blood cholesterol, and is suitable for patients with diabetes or celiac disease. The study aimed to compare the allocation of selected phenolic acids (neochlorogenic acid, chlorogenic acid, trans-caffeic acid, trans-p-coumaric acid, trans-sinapic acid, trans-ferulic acid) and flavonoids (rutin, vitexin, quercetin, kaempferol) in the leaves, flowers, and grain of buckwheat cultivars of different origin. The content of individual phenolics was determined by the HPLC-DAD method. The results confirmed the determining role of cultivar on the relative content of chlorogenic acid, trans-caffeic acid, trans-sinapic acid, vitexin, and kaempferol in buckwheat plants. A significantly negative correlation among concentrations of phenolic acids in different common buckwheat plant parts shows that there are different mechanisms of genetic influences on the concentration of phenolic substances in common buckwheat flowers, leaves, and grain. These differences should be taken into account when breeding buckwheat for a high concentration of selected phenolic substances.


Sign in / Sign up

Export Citation Format

Share Document