rutin and quercetin
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 35)

H-INDEX

25
(FIVE YEARS 2)

Metabolites ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 16
Author(s):  
Yue Guo ◽  
Wanda J. Weber ◽  
Dan Yao ◽  
Luciano Caixeta ◽  
Noah P. Zimmerman ◽  
...  

Rutin, a natural flavonol glycoside, elicits its diverse health-promoting effects from the bioactivities of quercetin, its aglycone. While widely distributed in the vegetables and fruits of human diet, rutin is either absent or inadequate in common animal feed ingredients. Rutin has been supplemented to dairy cows for performance enhancement, but its metabolic fate in vivo has not been determined. In this study, plasma, urine, and rumen fluid samples were collected before and after the intraruminal dosing of 100 mg/kg rutin to 4 Holsteins, and then characterized by both targeted and untargeted liquid chromatography-mass spectrometry (LC-MS)-based metabolomic analysis. In plasma and urine, 4-methylcatechol sulfate was identified as the most abundant metabolite of rutin, instead of quercetin and its flavonol metabolites, and its concentration was inversely correlated with the concentration of p-cresol sulfate. In rumen fluid, the formation of 3,4-dihydroxyphenylacetic acid (DHPAA) and 4-methylcatechol after rapid degradation of rutin and quercetin concurred with the decrease of p-cresol and the increase of its precursor, 4-hydroxyphenylacetic acid. Overall, the formation of 4-methylcatechol, a bioactive microbial metabolite, as the dominant bioavailable metabolite of rutin and quercetin, could contribute to their beneficial bioactivities in dairy cows, while the decrease of p-cresol, a microbial metabolite with negative biological and sensory properties, from the competitive inhibition between microbial metabolism of rutin and tyrosine, has the potential to reduce environmental impact of dairy operations and improve the health of dairy cattle.


2021 ◽  
Vol 11 (15) ◽  
pp. 6941
Author(s):  
Cláudia M. B. Neves ◽  
António Pinto ◽  
Fernando Gonçalves ◽  
Dulcineia F. Wessel

Elderberry (Sambucus nigra L.) juice concentrate is highly rich in polyphenols, particularly anthocyanins and flavonols, which have been associated with a wide range of health-promoting properties. Phenolic compounds, in particular anthocyanins, are unstable and may change during storage, which might influence the product color quality and its potential health effects. The aim of this study was to evaluate the changes in the polyphenols profile of elderberry juice concentrate produced at an industrial scale during seven months of storage at 5 °C and at room temperature. The total phenolic content, the total monomeric anthocyanins, the percent polymeric color, and the ABTS•+ scavenging activity were monitored over time. In addition, the profile and content of the main individual phenolic compounds were also assessed by HPLC-DAD. The results show that cyanidin-3-O-sambubioside, cyanidin-3-O-glucoside, cyanidin-3-O-sambubioside-5-O-glucoside, cyanidin-3,5-O-diglucoside, chlorogenic acid, rutin, and quercetin-3-O-glucoside were the main phenolic compounds identified. Storage at room temperature resulted in a strong reduction in total monomeric anthocyanin content accompanied by an increase in percent polymeric color values. Cyanidin-3-O-sambubioside and cyanidin-3-O-glucoside degraded faster than cyanidin-3,5-O-diglucoside and cyanidin-3-O-sambubioside-5-O-glucoside. Concentration of chlorogenic acid also decreased over storage, whereas rutin and quercetin-3-O-glucoside were quite stable. Storage at 5 °C caused a lower impact on the contents of anthocyanins and chlorogenic acid and the percent polymeric color was not affected. The total phenolic content and the in vitro antioxidant activity remained quite similar over the time, for both temperatures, suggesting that elderberry concentrates still preserve their health benefits of antioxidant capacity after seven months of storage.


Fagopyrum ◽  
2021 ◽  
Vol 38 (2) ◽  
pp. 43-53
Author(s):  
Blanka Vombergar

The concentration of flavonoids rutin and quercetin in flours of common and Tartary buckwheat was investigated. In Tartary buckwheat, concentration of rutin is much higher compared to common buckwheat. In Tartary buckwheat it was measured 1.17 to 1.75% rutin in dry matter, while in common buckwheat it was only 0.003%. After direct contact of buckwheat flour with water, different biochemical activities in Tartary buckwheat developed with rutin. After the time (5 minutes or two hours), the concentration of rutin is in the flour-water mixtures much lowered, and quercetin appeared. However, after quick initial changes, some rutin remained in flour-water mixtures even after 24 hours. In any way, after 24 hours of direct contact of flour particles with water, the concentration of quercetin is higher than that of rutin. It is established that the concentration of rutin in flour-water mixtures is the result of two processes. One is the release of rutin from grain structures and its dissolving in water, and the second is the release of rutin degrading enzymes from grain structures and their activity in solution. 


Author(s):  
Thasa Muthia Wulandari ◽  
Boy Chandra ◽  
Zulharmita Zulharmita ◽  
Harrizul Rivai

Tempuyung (Sonchus arvensis L.) is one of the herbs that the community has widely known. This plant is easy to come by and has excellent benefits. Therefore, it is necessary to obtain information about phytochemicals and their pharmacological effects. Information search is done by literature studies in primary data or official book forms and international journals through trusted websites such as Mendeley, Scopus, ScienceDirect, NCBI, ResearchGate, Google Scholar, Pubmed. The results showed tempuyung has phytochemical compounds, especially flavonoids and derivatives such as kaempferol, rutin, and quercetin. This compound is isolated from the leaves of tempuyung by various extraction methods. Pharmacologically, this plant has been reported to have antibacterial and antiviral, diuretic, kidney stones, antihistamine, antihypertensive, and antihyperuricemia. Thus, tempuyung can be used as an ingredient for traditional medicine, and further research needs to be done to isolate medicinal compounds from tempuyung.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3622
Author(s):  
Katarzyna Stec ◽  
Bożena Kordan ◽  
Beata Gabryś

Rutin and its aglycone quercetin occur in the fruits, leaves, seeds, and grains of many plant species and are involved in plant herbivore interactions. We studied the effect of the exogenous application of rutin and quercetin on the probing behavior (= stylet penetration activities in plant tissues) of Acyrthosiphon pisum on Pisum sativum, Myzus persicae on Brassica rapa ssp. pekinensis, and Rhopalosiphum padi on Avena sativa using the electrical penetration graph technique (EPG = electropenetrography). The reaction of aphids to quercetin and rutin and the potency of the effect depended on aphid species, the flavonol, and flavonol concentration. Quercetin promoted probing activities of A. pisum within non-phloem and phloem tissues, which was demonstrated in the longer duration of probes and a trend toward longer duration of sap ingestion, respectively. M. persicae reached phloem in a shorter time on quercetin-treated B. rapa than on the control. Rutin caused a delay in reaching sieve elements by A. pisum and deterred probing activities of M. persicae within non-phloem tissues. Probing of R. padi was not affected by quercetin or rutin. The potency of behavioral effects increased as the applied concentrations of flavonols increased. The prospects of using quercetin and rutin in plant protection are discussed.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2910
Author(s):  
Anna Przybylska-Balcerek ◽  
Tomasz Szablewski ◽  
Lidia Szwajkowska-Michałek ◽  
Dariusz Świerk ◽  
Renata Cegielska-Radziejewska ◽  
...  

Due to the health-promoting properties of elderberry fruits, which result from their rich chemical composition, this raw material is widely used in herbal medicine and the food industry. The aim of the study was to demonstrate the antibacterial activity of the elderberry fruit extracts. The research showed that the content of phenolic acids and flavonoids in the extracts determined their antibacterial activity. The research showed that the content of phenolic acids and flavonoids in the extracts determined their antibacterial activity. The following phenolic acids were predominant: chlorogenic acid, sinapic acid, and t-cinnamic acid. Their average content was, respectively, 139.09, 72.84, 51.29 mg/g extract. Rutin and quercetin (their average content was 1105.39 and 306.6 mg/g extract, respectively) were the dominant flavonoids. The research showed that the elderberry polyphenol extracts exhibited activity against selected strains of bacteria within the concentration range of 0.5–0.05%. The following bacteria were the most sensitive to the extracts: Micrococcus luteus, Proteus mirabilis, Pseudomonas fragii, and Escherichia coli. Of the compounds under analysis, apigenin, kaempferol and ferulic, protocatechuic, and p-coumarin acids had the greatest influence on the high antibacterial activity of elderberry extracts. The results of the microbiological and chemical analyses of the composition of the extracts were analyzed statistically to indicate the bioactive compounds of the greatest antimicrobial significance.


Sign in / Sign up

Export Citation Format

Share Document