scholarly journals Epipelagic copepod distributions in the eastern equatorial Pacific during the weak La Niña event of 2001

2011 ◽  
Vol 75 (4) ◽  
pp. 791-802 ◽  
Author(s):  
Pritha Tutasi ◽  
Sergio Palma ◽  
Mario Cáceres
2019 ◽  
Vol 49 (6) ◽  
pp. 1541-1560 ◽  
Author(s):  
Allan J. Clarke ◽  
Xiaolin Zhang

AbstractPrevious work has shown that warm water volume (WWV), usually defined as the volume of equatorial Pacific warm water above the 20°C isotherm between 5°S and 5°N, leads El Niño. In contrast to previous discharge–recharge oscillator theory, here it is shown that anomalous zonal flow acceleration right at the equator and the movement of the equatorial warm pool are crucial to understanding WWV–El Niño dynamics and the ability of WWV to predict ENSO. Specifically, after westerly equatorial wind anomalies in a coupled ocean–atmosphere instability push the warm pool eastward during El Niño, the westerly anomalies follow the warmest water south of the equator in the Southern Hemisphere summer in December–February. With the wind forcing that causes El Niño in the eastern Pacific removed, the eastern equatorial Pacific sea level and thermocline anomalies decrease. Through long Rossby wave dynamics this decrease results in an anomalous westward equatorial flow that tends to push the warm pool westward and often results in the generation of a La Niña during March–June. The anomalously negative eastern equatorial Pacific sea level typically does not change as much during La Niña, the negative feedback is not as strong, and El Niños tend to not follow La Niñas the next year. This El Niño/La Niña asymmetry is seen in the WWV/El Niño phase diagram and decreased predictability during “La Niña–like” decades.


2016 ◽  
Vol 29 (16) ◽  
pp. 5859-5877 ◽  
Author(s):  
Han-Ching Chen ◽  
Zeng-Zhen Hu ◽  
Bohua Huang ◽  
Chung-Hsiung Sui

Abstract This study shows the sudden basinwide reversal of anomalous equatorial zonal transport above the thermocline at the peaking phase of ENSO triggers rapid termination of ENSO events. The anomalous equatorial zonal transport is controlled by the concavity of anomalous thermocline meridional structure across the equator. During the developing phase of ENSO, opposite zonal transport anomalies form in the western-central and central-eastern equatorial Pacific, respectively. Both are driven by the equatorial thermocline anomalies in response to zonal wind anomalies over the western-central equatorial ocean. At this stage, the anomalous zonal transport in the east enhances ENSO growth through zonal SST advection. In the mature phase of ENSO, off-equatorial thermocline depth anomalies become more dominant in the eastern Pacific because of the reflection of equatorial signals at the eastern boundary. As a result, the meridional concavity of the thermocline anomalies is reversed in the east. This change reverses zonal transport rapidly in the central-to-eastern equatorial Pacific, joining with the existing reversed zonal transport anomalies farther to the west, and forms a basinwide transport reversal throughout the equatorial Pacific. This basinwide transport reversal weakens the ENSO SST anomalies by reversed advection. More importantly, the reversed zonal transport reduces the existing zonal tilting of the equatorial thermocline and weakens its feedback to wind anomalies effectively. This basinwide reversal is built in at the peak phase of ENSO as an oceanic control on the evolution of both El Niño and La Niña events. The reversed zonal transport anomaly after the mature phase weakens El Niño in the eastern Pacific more efficiently than it weakens La Niña.


2003 ◽  
Vol 18 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Ignacio Martínez ◽  
Lloyd Keigwin ◽  
Timothy T. Barrows ◽  
Yusuke Yokoyama ◽  
John Southon

2017 ◽  
Vol 30 (11) ◽  
pp. 4207-4225 ◽  
Author(s):  
Tsubasa Kohyama ◽  
Dennis L. Hartmann ◽  
David S. Battisti

Abstract The majority of the models that participated in phase 5 of the Coupled Model Intercomparison Project global warming experiments warm faster in the eastern equatorial Pacific Ocean than in the west. GFDL-ESM2M is an exception among the state-of-the-art global climate models in that the equatorial Pacific sea surface temperature (SST) in the west warms faster than in the east, and the Walker circulation strengthens in response to warming. This study shows that this “La Niña–like” trend simulated by GFDL-ESM2M could be a physically consistent response to warming, and that the forced response could have been detectable since the late twentieth century. Two additional models are examined: GFDL-ESM2G, which differs from GFDL-ESM2M only in the oceanic components, warms without a clear zonal SST gradient; and HadGEM2-CC exhibits a warming pattern that resembles the multimodel mean. A fundamental observed constraint between the amplitude of El Niño–Southern Oscillation (ENSO) and the mean-state zonal SST gradient is reproduced well by GFDL-ESM2M but not by the other two models, which display substantially weaker ENSO nonlinearity than is observed. Under this constraint, the weakening nonlinear ENSO amplitude in GFDL-ESM2M rectifies the mean state to be La Niña–like. GFDL-ESM2M exhibits more realistic equatorial thermal stratification than GFDL-ESM2G, which appears to be the most important difference for the ENSO nonlinearity. On longer time scales, the weaker polar amplification in GFDL-ESM2M may also explain the origin of the colder equatorial upwelling water, which could in turn weaken the ENSO amplitude.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Michiya Hayashi ◽  
Fei-Fei Jin ◽  
Malte F. Stuecker

Abstract The El Niño-Southern Oscillation (ENSO) results from the instability of and also modulates the strength of the tropical-Pacific cold tongue. While climate models reproduce observed ENSO amplitude relatively well, the majority still simulates its asymmetry between warm (El Niño) and cold (La Niña) phases very poorly. The causes of this major deficiency and consequences thereof are so far not well understood. Analysing both reanalyses and climate models, we here show that simulated ENSO asymmetry is largely proportional to subsurface nonlinear dynamical heating (NDH) along the equatorial Pacific thermocline. Most climate models suffer from too-weak NDH and too-weak linear dynamical ocean-atmosphere coupling. Nevertheless, a sizeable subset (about 1/3) having relatively realistic NDH shows that El Niño-likeness of the equatorial-Pacific warming pattern is linearly related to ENSO amplitude change in response to greenhouse warming. Therefore, better simulating the dynamics of ENSO asymmetry potentially reduces uncertainty in future projections.


2012 ◽  
Vol 19 (2) ◽  
pp. 216-225 ◽  
Author(s):  
Milind Mujumdar ◽  
B. Preethi ◽  
T. P. Sabin ◽  
Karumuri Ashok ◽  
Sajjad Saeed ◽  
...  

2002 ◽  
Vol 54 (1-4) ◽  
pp. 185-203 ◽  
Author(s):  
G.E Friederich ◽  
P.M Walz ◽  
M.G Burczynski ◽  
F.P Chavez

Sign in / Sign up

Export Citation Format

Share Document