scholarly journals Experiments with a Virtual Lab for Industrial Robots Programming

2015 ◽  
Vol 11 (5) ◽  
pp. 10 ◽  
Author(s):  
Paulo Abreu ◽  
Manuel Romano Barbosa ◽  
António Mendes Lopes

This paper presents the use of a virtual lab for teaching industrial robots programming to university students. The virtual lab, that replicates the existing physical lab, is built using an industrial simulation software package, RobotStudio™. The capabilities of this tool are explored in order to complement the introduction of theoretical concepts with practical programming experience. In addition to illustrate the use of different coordinate systems in a robotic cell, a description of the tool center point calibration and examples of evaluating different moving strategies to cover a plane surface, are also presented.

2021 ◽  
Vol 36 (4) ◽  
pp. 373-378
Author(s):  
Haewon Jung ◽  
Dal-Jae Yun ◽  
Hoon Kang

An image focusing method for holographic subsurface radar (HSR) is proposed herein. HSR is increasingly being utilized to survey objects buried at shallow depths and the acquired signals are converted into an image by a reconstruction algorithm. However, that algorithm requires actual depth and material information or depends on human decisions. In this paper, an entropy-based image focusing technique is proposed and validated by numerical simulation software package based on finite-difference time-domain method and experiment. The resulting images show good agreement with the actual positions and shapes of the targets.


Author(s):  
Vladimir Kuts ◽  
Martinš Sarkans ◽  
Tauno Otto ◽  
Toivo Tähemaa ◽  
Yevhen Bondarenko

Abstract Modern Industrial Robot (IR) programming process is mainly performed by using three different methods — manual, offline, and online programming. Each of these methods has various advantages and disadvantages. Prominent automotive industries often use a combination of them, as there is no way to avoid one or another form of programming on one factory. However, the use of a combination of different programming methods is time-consuming and demands the operator’s presence on site for reconfiguration of the IR. The primary goal of this study is to introduce and test the concept of a hybrid IR programming method, which combines both: offline and online robotic cell design, programming, and re-configuration methods. Testing of this method is based on fully synchronized robotic cell’s Digital Twin (DT), developed in Industrial Virtual and Augmented Laboratory of Tallinn University of Technology. Usage of the virtual replica allows to plan and program robotic cell on the means of telepresence and interfere with the predefined path of the robot by online programming method. Moreover, this approach reduces the time for robotic cell design and re-programming, enables to minimize downtime of the robotic cell on the factory shop floor. Included Virtual Reality (VR) environment allows simulating a full-scale operator presence on site. Thus, the proposed approach supports an immersive and safe environment for the IR and similar equipment programming purposes.


2020 ◽  
Vol 180 ◽  
pp. 04005
Author(s):  
Vergil Muraru ◽  
Constantin Calinoiu ◽  
Sebastian Muraru ◽  
Ana Dulgheru ◽  
Cornelia Muraru-Ionel

The paper presents the results of research on the performance of linear electro-hydraulic servomechanisms with stepper motor, evaluated by mathematical modelling and numerical simulation with the AMESIM software package. These servomechanisms have a great potential for application, including for agricultural technical equipment. Servomechanisms of various types are used for the rapid and high precision operation of the various systems. In practice, electro-hydraulic servomechanisms have been required in the case of the systems requiring high forces or moments. These equipment are automatic hydraulic tracking systems and can be analysed with methods specific to automatic systems. The paper contains a structural description of an electro-mechanical servomechanism with stepper motor, its operation, mathematical model and its performances obtained by numerical simulation. The mathematical modelling of the electro-hydraulic servomechanism is based on the relations between the input sizes and output sizes of the equipment in its structure as well as the connection relations between these equipment. Based on the obtained results it is demonstrated that the analysis and synthesis of electro-hydraulic servomechanisms with stepper motor can be determined by numerical simulation using the AMESIM simulation software.


2010 ◽  
Vol 26-28 ◽  
pp. 900-904 ◽  
Author(s):  
Yong He ◽  
Guo Fu Ding ◽  
Yi Sheng Zou ◽  
Mei Wei Jia ◽  
Ming Heng Xu

An object-oriented modeling method was proposed to develop a simulation software package named GVDS which could be used to predict some aspects of dynamic behavior of railway vehicle. The package based on multi-body dynamics mainly consists of three parts, an interactive pre-processor, the solver and an interactive post-processor. With UML, demands and structure of the software package are represented. By modeling of the geometry and behavior of each object, virtual prototype of railway vehicle is formed and by the simulation, the critical speed of hunting stability, wheel-rail contact forces and so on can be determined and the hunting stability, curving behavior and ride comfort can be analyzed and evaluated. Finally, some cases are simulated. The simulation results show the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document