scholarly journals An Improved DV-Hop Algorithm Based on Shuffled Frog Leaping Algorithm

2015 ◽  
Vol 11 (9) ◽  
pp. 17 ◽  
Author(s):  
Xiaoying Yang ◽  
Wanli Zhang ◽  
Qixiang Song

According to that node localization accuracy is not high in the DV Hop localization algorithm, shuffled frog leaping algorithm with many advantages such as the convergence speed is fast, easy to realize and excellent performance of global optimization and so on is introduced into the design of DV-Hop algorithm. A new DV-Hop algorithm based on shuffled frog leaping algorithm (Shuffled Frog Leaping DV-Hop Algorithm, SF LA DV-Hop) is proposed in this paper. Based on traditional DV-Hop algorithm, the new algorithm used distance of nodes and position information of anchor nodes to establish objective optimization function and realize the estimation of unknown node coordinate in the final stage of DV-Hop algorithm. The simulation results showed that compared with the traditional DV-Hop algorithm, based on not increasing the sensor node hardware overhead, the improved algorithm can effectively reduce the positioning error.

2014 ◽  
Vol 654 ◽  
pp. 362-365
Author(s):  
Hong Li Yuan ◽  
Jian Yin Lu ◽  
Xiao Ming Zhang

Localization technology is enabling technology for wireless sensor applications. In order to improve the localization accuracy of wireless sensor network node, this paper proposes a mobile anchor node localization based on a layered approach. First area for wireless sensor networks slicing. Each layer consists of a number of equilateral triangles. Anchor nodes in each layer moves along the edge of the equilateral triangle to locate unknown node. After receiving the position information of the anchor node, unknown node to determine their own position by the triangular positioning.


2013 ◽  
Vol 303-306 ◽  
pp. 201-205
Author(s):  
Shao Ping Zhang

Localization technology is one of the key supporting technologies in wireless sensor networks. In this paper, a collaborative multilateral localization algorithm is proposed to localization issues for wireless sensor networks. The algorithm applies anchor nodes within two hops to localize unknown nodes, and uses Nelder-Mead simplex optimization method to compute coordinates of the unknown nodes. If an unknown node can not be localized through two-hop anchor nodes, it is localized by anchor nodes and localized nodes within two hops through auxiliary iterative localization method. Simulation results show that the localization accuracy of this algorithm is very good, even in larger range errors.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2860 ◽  
Author(s):  
Lijun Sun ◽  
Tianfei Chen

Node localization is an essential requirement in the increasing prevalence of wireless sensor networks applications. As the most commonly used localization algorithm, the DV_Distance algorithm is more sensitive to ranging error, and also has lower localization accuracy. Therefore, this paper proposes a novel difference DV_Distance localization algorithm using correction coefficients of unknown nodes. Taking account of the fact that correction coefficients of unknown nodes should be different, the proposed method has employed the correction model based on unknown nodes. Some correction coefficients for different direction anchor nodes can be indirectly calculated using the known difference of actual Euclidean distance and corresponding accumulated hop distance between anchor nodes, and then the weighting factors for the correction coefficients of different direction anchor nodes are also computed according to their actual contribution degree, so as to make sure that the corrected distances from unknown nodes to anchor nodes, modified by the final correction coefficient, are closer to the actual distances. At last, the positions of unknown nodes can be calculated using multilateral distance measurement. The simulation results demonstrate that the proposed approach is a localization algorithm with easier implementation, and it not only has better performance on localization accuracy than existing DV_Distance localization algorithm, but also improves the localization stability under the same experimental conditions.


2017 ◽  
Vol 13 (02) ◽  
pp. 102 ◽  
Author(s):  
Lieping Zhang ◽  
Fei Peng ◽  
Peng Cao ◽  
Wenjun Ji

Aiming at the low accuracy of DV-Hop localization algorithm in three-dimensional localization of wireless sensor network, a DV-Hop localization algorithm optimized by adaptive cuckoo search algorithm was proposed in this paper. Firstly, an improved DV-Hop algorithm was proposed, which can reduce the localization error of DV-Hop algorithm by controlling the network topology and improving the method for calculating average hop distance. Meanwhile, aiming at the slow convergence in traditional cuckoo search algorithm, the adaptive strategy was improved for the step search strategy and the bird's nest recycling strategy. And the adaptive cuckoo search algorithm was introduced to the process of node localization to optimize the unknown node position estimation. The experiment results show that compared with the improved DV-Hop algorithm and the traditional DV-Hop algorithm, the DV-Hop algorithm optimized by adaptive cuckoo search algorithm improved the localization accuracy and reduced the localization errors.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Rui Jiang ◽  
Xin Wang ◽  
Li Zhang

According to the application of range-free localization technology for wireless sensor networks (WSNs), an improved localization algorithm based on iterative centroid estimation is proposed in this paper. With this methodology, the centroid coordinate of the space enclosed by connected anchor nodes and the received signal strength indication (RSSI) between the unknown node and the centroid are calculated. Then, the centroid is used as a virtual anchor node. It is proven that there is at least one connected anchor node whose distance from the unknown node must be farther than the virtual anchor node. Hence, in order to reduce the space enclosed by connected anchor nodes and improve the location precision, the anchor node with the weakest RSSI is replaced by this virtual anchor node. By applying this procedure repeatedly, the localization algorithm can achieve a good accuracy. Observing from the simulation results, the proposed algorithm has strong robustness and can achieve an ideal performance of localization precision and coverage.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Iram Javed ◽  
Xianlun Tang ◽  
Kamran Shaukat ◽  
Muhammed Umer Sarwar ◽  
Talha Mahboob Alam ◽  
...  

In a wireless sensor network (WSN), node localization is a key requirement for many applications. The concept of mobile anchor-based localization is not a new concept; however, the localization of mobile anchor nodes gains much attention with the advancement in the Internet of Things (IoT) and electronic industry. In this paper, we present a range-free localization algorithm for sensors in a three-dimensional (3D) wireless sensor networks based on flying anchors. The nature of the algorithm is also suitable for vehicle localization as we are using the setup much similar to vehicle-to-infrastructure- (V2I-) based positioning algorithm. A multilayer C-shaped trajectory is chosen for the random walk of mobile anchor nodes equipped with a Global Positioning System (GPS) and broadcasts its location information over the sensing space. The mobile anchor nodes keep transmitting the beacon along with their position information to unknown nodes and select three further anchor nodes to form a triangle. The distance is then computed by the link quality induction against each anchor node that uses the centroid-based formula to compute the localization error. The simulation shows that the average localization error of our proposed system is 1.4 m with a standard deviation of 1.21 m. The geometrical computation of localization eliminated the use of extra hardware that avoids any direct communication between the sensors and is applicable for all types of network topologies.


2014 ◽  
Vol 644-650 ◽  
pp. 4422-4426 ◽  
Author(s):  
Xi Yang ◽  
Jun Liu

For nodes’ self-localization in wireless sensor networks (WSN), a new localization algorithm called Sequence Localization algorithm based on 3D Voronoi diagram (SL3V) is proposed, which uses 3D Voronoi diagram to divide the localization space.It uses the polyhedron vertices as the virtual beacon nodes and constructs the rank sequence table of virtual beacon nodes. Then it computes Kendall coefficients of the ranks in the optimal rank sequence table and that of the unknown node. Finally, it realizes the weighted estimate of the unknown node by normalization processing Kendall coefficients. Simulation experiments prove that itcan obviously improve the localization accuracy compared with the traditional 2D sequence-based localization and can satisfy the need of localization for 3D space.


Author(s):  
Songhao Jia ◽  
Cai Yang ◽  
Xing Chen ◽  
Yan Liu ◽  
Fangfang Li

Background: In the applications of wireless sensor network technology, three-dimensional node location technology is crucial. The process of node localization has some disadvantages, such as the uneven distribution of anchor nodes and the high cost of the network. Therefore, the mobile anchor nodes are introduced to effectively solve accurate positioning. Objective: Considering the estimated distance error, the received signal strength indication technology is used to optimize the measurement of the distance. At the same time, dynamic stiffness planning is introduced to increase virtual anchor nodes. Moreover, the bird swarm algorithm is also used to solve the optimal location problem of nodes. Method: Firstly, the dynamic path is introduced to increase the number of virtual anchor nodes. At the same time, the improved RSSI distance measurement technology is introduced to the node localization. Then, an intelligent three-dimensional node localization algorithm based on dynamic path planning is proposed. Finally, the proposed algorithm is compared with similar algorithms through simulation experiments. Results: Simulation results show that the node coordinates obtained by the proposed algorithm are more accurate, and the node positioning accuracy is improved. The execution time and network coverage of the algorithm are better than similar algorithms. Conclusion: The proposed algorithm significantly improves the accuracy of node positioning. However, the traffic of the algorithm is increased. A little increase in traffic in exchange for positioning accuracy is worthy of recognition. The simulation results show that the proposed algorithm is robust and can be implemented and promoted in the future.


2020 ◽  
Vol 17 (12) ◽  
pp. 5409-5421
Author(s):  
M. Santhosh ◽  
P. Sudhakar

Node localization in wireless sensor network (WSN) becomes essential to calculate the coordinate points of the unknown nodes with the use of known or anchor nodes. The efficiency of the WSN has significant impact on localization accuracy. Node localization can be considered as an optimization problem and bioinspired algorithms finds useful to solve it. This paper introduces a novel Nelder Mead with Grasshopper Optimization Algorithm (NMGOA) for node localization in WSN. The Nelder-Mead simplex search method is employed to improve the effectiveness of GOA because of its capability of faster convergence. At the beginning, the nodes in WSN are arbitrarily placed in the target area and then nodes are initialized. Afterwards, the node executes the NMGOA technique for estimating the location of the unknown nodes and become localized nodes. In the subsequent round, the localized nodes will be included to the collection of anchor nodes to perform the localization process. The effectiveness of the NMGOA model is validated using a series of experiments and results indicated that the NMGOA model has achieved superior results over the compared methods.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 343 ◽  
Author(s):  
Dezhi Han ◽  
Yunping Yu ◽  
Kuan-Ching Li ◽  
Rodrigo Fernandes de Mello

The Distance Vector-Hop (DV-Hop) algorithm is the most well-known range-free localization algorithm based on the distance vector routing protocol in wireless sensor networks; however, it is widely known that its localization accuracy is limited. In this paper, DEIDV-Hop is proposed, an enhanced wireless sensor node localization algorithm based on the differential evolution (DE) and improved DV-Hop algorithms, which improves the problem of potential error about average distance per hop. Introduced into the random individuals of mutation operation that increase the diversity of the population, random mutation is infused to enhance the search stagnation and premature convergence of the DE algorithm. On the basis of the generated individual, the social learning part of the Particle Swarm (PSO) algorithm is embedded into the crossover operation that accelerates the convergence speed as well as improves the optimization result of the algorithm. The improved DE algorithm is applied to obtain the global optimal solution corresponding to the estimated location of the unknown node. Among the four different network environments, the simulation results show that the proposed algorithm has smaller localization errors and more excellent stability than previous ones. Still, it is promising for application scenarios with higher localization accuracy and stability requirements.


Sign in / Sign up

Export Citation Format

Share Document