scholarly journals Modeling Graywater in Residences: Using Shower Effluent in the Toilet Reservoir

2007 ◽  
Vol 2 (2) ◽  
pp. 109-120
Author(s):  
Xing Wu ◽  
Burcu Akinci ◽  
Cliff I Davidson

Use of municipal water in residences can be decreased substantially by allowing “graywater” effluent from showering and other activities to fill the toilet reservoir. This paper considers a system developed in Germany for treatment and storage of shower wastewater for use in flushing the toilet. Based on literature data for distributions of shower duration and water flow rate, the volume of municipal water saved using the German system has been estimated for several usage scenarios. Results show significant savings of water that depend on the size of the treatment and storage tanks used in the graywater system as well as the number of toilet flushes per day. For example, a scenario with four residents each flushing nine times per day with 80 liter treatment and storage tanks shows a 50% chance that the savings in municipal water use for the toilet will exceed 73%. Because the timing of showers and toilet flushes is assumed to follow a uniform distribution throughout the day, the calculated tank sizes may be underestimates.


1999 ◽  
Author(s):  
Sachiyo Horiki ◽  
Masahiro Osakabe

Abstract Flow header for small multiple pipes is commonly used in boilers and heat exchangers. The system contributes to raise the heat transfer efficiency in the components. The flow distribution mechanism of the header for water has been studied and the calculation procedure for the design has been recommended for a single-phase condition. It is also recommended to avoid the bubbles in the header to obtain a uniform water flow rate to each small pipe. But in some cases, the header has to be used to distribute a flow containing bubbles. Distribution behavior of water with a gas-phase was studied experimentally in a horizontal header with four vertical pipes. In the present experimental header, it was possible to protrude the branch pipes inside of the header and the effect of protruding length on the water distribution behavior was studied. When the protruding length was 0, the water distribution rate to the first pipe rapidly increased and the rates to the others decreased with a small amount of bubbles. As the bubbles in the header were absorbed only into the first pipe, the average two-phase density in the first pipe decreased. The decreased pressure head promotes the rush of water into the first pipe such as in an airlift pump. By increasing the air flow rate in the header inlet further, the flow rate to the first pipe took a maximum and then tended to decrease. The increased air flow rate in the first pipe increased the pressure loss in the pipe and resulted in a reduction in the water flow rate. The more important and serious behavior could be seen in the other pipes where the water flow rate decreased to 1/5 of the uniform distribution rate. By increasing the protruding length, the non-uniform distribution of water was suppressed because the gas-phase entered not only the first pipe but also the others. The best result was obtained when the four branch pipes were protruded into the center of header.



Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 682
Author(s):  
Eko Surojo ◽  
Aziz Harya Gumilang ◽  
Triyono Triyono ◽  
Aditya Rio Prabowo ◽  
Eko Prasetya Budiana ◽  
...  

Underwater wet welding (UWW) combined with the shielded metal arc welding (SMAW) method has proven to be an effective way of permanently joining metals that can be performed in water. This research was conducted to determine the effect of water flow rate on the physical and mechanical properties (tensile, hardness, toughness, and bending effect) of underwater welded bead on A36 steel plate. The control variables used were a welding speed of 4 mm/s, a current of 120 A, electrode E7018 with a diameter of 4 mm, and freshwater. The results show that variations in water flow affected defects, microstructure, and mechanical properties of underwater welds. These defects include spatter, porosity, and undercut, which occur in all underwater welding results. The presence of flow and an increased flow rate causes differences in the microstructure, increased porosity on the weld metal, and undercut on the UWW specimen. An increase in water flow rate causes the acicular ferrite microstructure to appear greater, and the heat-affected zone (HAZ) will form finer grains. The best mechanical properties are achieved by welding with the highest flow rate, with a tensile strength of 534.1 MPa, 3.6% elongation, a Vickers microhardness in the HAZ area of 424 HV, and an impact strength of 1.47 J/mm2.



Author(s):  
Afshin Goharzadeh ◽  
Keegan Fernandes

This paper presents an experimental investigation on a modified airlift pump. Experiments were undertaken as a function of air-water flow rate for two submergence ratios (ε=0.58 and 0.74), and two different riser geometries (i) straight pipe with a constant inner diameter of 19 mm and (ii) enlarged pipe with a sudden expanded diameter of 19 to 32 mm. These transparent vertical pipes, of 1 m length, were submerged in a transparent rectangular tank (0.45×0.45×1.1 m3). The compressed air was injected into the vertical pipe to lift the water from the reservoir. The flow map regime is established for both configurations and compared with previous studies. The two phase air-water flow structure at the expansion region is experimentally characterized. Pipeline geometry is found to have a significant influence on the output water flow rate. Using high speed photography and electrical conductivity probes, new flow regimes, such as “slug to churn” and “annular to churn” flow, are observed and their influence on the output water flow rate and efficiency are discussed. These experimental results provide fundamental insights into the physics of modified airlift pump.



Energies ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 112 ◽  
Author(s):  
Yonghong Guo ◽  
Huimin Wei ◽  
Xiaoru Yang ◽  
Weijia Wang ◽  
Xiaoze Du ◽  
...  




Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 167
Author(s):  
Hasan Alimoradi ◽  
Madjid Soltani ◽  
Pooriya Shahali ◽  
Farshad Moradi Kashkooli ◽  
Razieh Larizadeh ◽  
...  

In this study, a numerical and empirical scheme for increasing cooling tower performance is developed by combining the particle swarm optimization (PSO) algorithm with a neural network and considering the packing’s compaction as an effective factor for higher accuracies. An experimental setup is used to analyze the effects of packing compaction on the performance. The neural network is optimized by the PSO algorithm in order to predict the precise temperature difference, efficiency, and outlet temperature, which are functions of air flow rate, water flow rate, inlet water temperature, inlet air temperature, inlet air relative humidity, and packing compaction. The effects of water flow rate, air flow rate, inlet water temperature, and packing compaction on the performance are examined. A new empirical model for the cooling tower performance and efficiency is also developed. Finally, the optimized performance conditions of the cooling tower are obtained by the presented correlations. The results reveal that cooling tower efficiency is increased by increasing the air flow rate, water flow rate, and packing compaction.



Author(s):  
Mohammed El Hadi Attia ◽  
Abd Elnaby Kabeel ◽  
S. A. El-Agouz ◽  
El Mir Mabrouk Lassaad ◽  
Ravishankar Sathyamurthy ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document