scholarly journals Experimental Investigation on Improvement of Wet Cooling Tower Efficiency with Diverse Packing Compaction Using ANN-PSO Algorithm

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 167
Author(s):  
Hasan Alimoradi ◽  
Madjid Soltani ◽  
Pooriya Shahali ◽  
Farshad Moradi Kashkooli ◽  
Razieh Larizadeh ◽  
...  

In this study, a numerical and empirical scheme for increasing cooling tower performance is developed by combining the particle swarm optimization (PSO) algorithm with a neural network and considering the packing’s compaction as an effective factor for higher accuracies. An experimental setup is used to analyze the effects of packing compaction on the performance. The neural network is optimized by the PSO algorithm in order to predict the precise temperature difference, efficiency, and outlet temperature, which are functions of air flow rate, water flow rate, inlet water temperature, inlet air temperature, inlet air relative humidity, and packing compaction. The effects of water flow rate, air flow rate, inlet water temperature, and packing compaction on the performance are examined. A new empirical model for the cooling tower performance and efficiency is also developed. Finally, the optimized performance conditions of the cooling tower are obtained by the presented correlations. The results reveal that cooling tower efficiency is increased by increasing the air flow rate, water flow rate, and packing compaction.

2020 ◽  
Vol 1008 ◽  
pp. 177-185
Author(s):  
Hamed Abbady ◽  
Mahmoud Salem Ahmed ◽  
Hamdy Hassan ◽  
A.S.A. Mohamed

In this paper, an experimental work studies the principal operating parameters of a proposed desalination process using air humidification-dehumidification method. The major objective of this work is to determine the humid air behavior through the desalination system. Different operating conditions including the effect of the water temperature at the entry to the humidifier, the ratio of the mass of water to the air, the air/water flow rate, and cooling water at entry the dehumidifier on the desalination performance were studied. The results show that the freshwater increases with increasing the water temperature at the inlet of the humidifier, the ratio of the mass of water to air, and cooling water flow rate in the dehumidifier. Cooling water outlet temperature at the condenser increases with increasing the water temperature at humidifier inlet. Also, it decreases as increasing cooling water flow rate while the ratio of the mass of water to air achieves the highest productivity and gained output ratio (GOR). The achieved mass ratio (MR) is 4.5 and the mass flow rate of air is 0.8 kg/min.


1999 ◽  
Author(s):  
Sachiyo Horiki ◽  
Masahiro Osakabe

Abstract Flow header for small multiple pipes is commonly used in boilers and heat exchangers. The system contributes to raise the heat transfer efficiency in the components. The flow distribution mechanism of the header for water has been studied and the calculation procedure for the design has been recommended for a single-phase condition. It is also recommended to avoid the bubbles in the header to obtain a uniform water flow rate to each small pipe. But in some cases, the header has to be used to distribute a flow containing bubbles. Distribution behavior of water with a gas-phase was studied experimentally in a horizontal header with four vertical pipes. In the present experimental header, it was possible to protrude the branch pipes inside of the header and the effect of protruding length on the water distribution behavior was studied. When the protruding length was 0, the water distribution rate to the first pipe rapidly increased and the rates to the others decreased with a small amount of bubbles. As the bubbles in the header were absorbed only into the first pipe, the average two-phase density in the first pipe decreased. The decreased pressure head promotes the rush of water into the first pipe such as in an airlift pump. By increasing the air flow rate in the header inlet further, the flow rate to the first pipe took a maximum and then tended to decrease. The increased air flow rate in the first pipe increased the pressure loss in the pipe and resulted in a reduction in the water flow rate. The more important and serious behavior could be seen in the other pipes where the water flow rate decreased to 1/5 of the uniform distribution rate. By increasing the protruding length, the non-uniform distribution of water was suppressed because the gas-phase entered not only the first pipe but also the others. The best result was obtained when the four branch pipes were protruded into the center of header.


Author(s):  
Akinori Furukawa ◽  
Satoshi Ohshita ◽  
Kusuo Okuma ◽  
Satoshi Watanabe

A centrifugal impeller, the pumping action of which could be highly kept even at an air-water two-phase flow condition of inlet void fraction more than 30% in the region of relatively high water flow rate, has been developed. In the present paper, the design concept of two-phase flow impeller is described, at first, with experimental results. The short bladed forward impeller with high outlet blade angle was decided to keep theoretical head higher even in two-phase flow condition and to disperse the air accumulating region on the suction blade surface by the water jet flow coming from the pressure side. Furthermore, the tandem arrangement of outer and inner rotating cascades with the same blade numbers was adopted to suppress the rotating stall phenomena appearing in the case of a single stage of outer cascade. It should be noted that these results were obtained with operating a boost pump installed upstream of mixing section of air and water, that is not an actual operation of two-phase flow pump. Secondly, the operating characteristics of this two-phase flow pump with change of air flow rate were investigated experimentally without operating the boost pump. As the trajectory of operating point with increasing air flow rate appears along the resistance curve of piping system, the impossibility of pumping occurs at lower air flow rate even though pump head takes a positive value at high air flow rate with increasing water flow rate. It is recognized that it is necessary to improve two-phase flow head characteristic curves in the region of low water flow rate to operate in wider two-phase flow conditions.


2021 ◽  
Vol 35 (4) ◽  
pp. 24-32
Author(s):  
Jae Geun Jo ◽  
Chi Young Lee

In this study, the thermal radiation attenuation performance of water mist was investigated using twin-fluid atomizers. The water and air flow rates of Small atomizer were 36~105 g/min and 10~30 L/min, whereas those of Large atomizer were 37~300 g/min and 20~60 L/min, respectively. In the present experimental range, the thermal radiation attenuation of Small atomizer and Large atomizer were 6.1~11.9% and 5.2~14.6%, respectively. With the increase in water and air flow rates, the thermal radiation attenuation increased, and under similar water and air flow rate conditions, Small atomizer showed higher thermal radiation attenuation than Large atomizer. Based on the present experimental data, it was found that the air (gas) discharge area is a potentially important factor in determining the thermal radiation attenuation performance. Additionally, through the analysis of thermal radiation attenuation per unit water flow rate, it was confirmed that the twin-fluid atomizer can result in higher thermal radiation attenuation than the single-fluid atomizer under the same water flow rate condition.


2021 ◽  
Vol 37 (1) ◽  
pp. 105-112
Author(s):  
Komgrit Leksakul ◽  
Norrapon Vichiansan ◽  
Pisit Kaewkham ◽  
Boonprathan Hattaphasu ◽  
Dheerawan Boonyawan

HighlightsAbstract. In this study, we developed an effective methodology to determine the suitable plasma-based generating system of reactive nitrogen species (RNS) targeting hydroponic farming systems using a full factorial design with center points and blocking. A 2k with 2 blockings plus 2 center points design was employed in the experiment to develop an efficient analytical model for nitrogen solution concentration and hydroponic vegetable growth incorporating the plasma discharge system process parameters, including water flow rate, plasma discharge duration, and air flow rate. This study designed and constructed an air plasma discharge system with DC power supply. Thereafter, nitrogen solution was generated under a parameter conditions setting by the design of experiments (DOE) method. RNS solution, which contained nitrate (NO3-) and nitrite (NO2-) ions with P and K added, was passed through the hydroponic system for growing green oak lettuce. The most promising plasma-generated nitrogen solution parameters were obtained for this set up at a water flow rate of 6 L/min, discharge duration of 60 min, and activated air flow rate of 60 mL/min. Keywords: Nitrate, Nitrite, Plasma discharge, Reactive nitrogen species.


Author(s):  
Feras Z. Batarseh ◽  
Ilia V. Roisman ◽  
Cam Tropea

We present an experimental investigation of a spray generated by an airblast atomizer. Experiments have been performed in a pressure chamber equipped by transparent windows allowing an optical access to the spray. Several techniques of spray investigation have been applied: spray visualization using the high-speed video system, spray visualization and instantaneous velocity measurements using the PIV technique, spray velocimetry and sizing using the IPI and phase Doppler instruments. Phase Doppler instrument has been used to characterize the droplets in the spray: their diameter, two components of the velocity vector. Also the integral parameters of the spray, such as the local volume flux density, have been characterized. We conduct a parametric study of the effect of the ambient pressure, the air flow rate and the water flow rate on an atomized spray. Measurements at different radial locations in the spray and in two planes were performed. The measurements in these two planes allow one to determine the distributions of all the three components of the average drop velocity vector: axial, radial and azimuthal. PDA measurements show that atomized spray is sensitive to any change in the studied parameters. For example, increasing air flow rate from 20 SCMH to 45 SCMH and keeping same water flow rate and pressure, leads to an increase in all velocity components and also to a change in droplets diameters. On the other hand, keeping constant pressure and air flow rate and increasing water flow rate from 0.7 to 1.4 l/hr, leads to an increase in water droplets sizes and the axial velocity component, whereas the other velocity components show a non uniform change. Moreover, increasing the ambient pressure leads to the growth of the spray velocity and drops diameters.


2021 ◽  
Author(s):  
Fadhil Abdulrazzaq Kareem ◽  
Doaa Zaid Khalaf ◽  
Mustafa J. Al-Dulaimi ◽  
Yasser Abdul Lateef

Abstract Cooling towers, wherein water and air are contacted directly with each other, are specialized heat exchangers. These open-topped, tall, cubical or cylindrical shaped are responsible for reducing the temperature of the water that generated from the industrial or HVAC systems. The performance of the forced draft wet cooling tower is investigated experimentally. The performance analysis is based on the first and second law of thermodynamics. The impact of the inlet water temperature and water inlet flow rate is investigated. The inlet water temperature is varied from 28 °C to 42 °C for the water flow rates of (0.03, 0.05 and 0.075 kg/sec). The results reveal that the cooling capacity, cooling range, thermal efficiency and the total exergy destruction increase according to the increase in the inlet water temperature and the water flow rate. The maximum cooling range is found to be 14.8 °C with the maximum thermal efficiency of 74 %. On other hand, the exergy efficiency decreases with the increasing of the inlet water temperature and the water flow rate within a range of 11.9 % to 57.8 %.


2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Talib O Ahmadu ◽  
Hamisu A Dandajeh

Cooling towers are devices used to dissipate waste thermal heat to the ambient environment. Appropriate cooling water and air flow rates are necessary to ensure optimum cooling power and cooling efficiency. Also, a simple design is required for cost effectiveness and minimal maintenance issues. This paper experimentally evaluates the cooling power, cooling efficiency, as well as the optimum water to air flow ratio in a spray type induced draft wet cooling tower. The cooling tower, 6 kW cooling capacity, was developed to operate without packings. The experiments were conducted for three different air flow rates and six different water flow rates. Four different inlet water temperatures of 35, 40, 45 and 50 oC were used. The temperature range is a typical range for inlet water temperature to the cooling tower for an absorption cooling system. For each of the inlet water temperatures, air and water flow rates were varied. The effects of this variation on cooling power and cooling efficiency were studied. Effect of varying water to air flow ratio on cooling power and cooling efficiency were studied. Results showed that the cooling power increased with increasing water flow rate, while the cooling efficiency decreased with increasing water flow rate. Decreasing the air flow rate was seen to cause a decrease in both cooling power and cooling efficiency. Maximum cooling power and cooling efficiency of 5.33 kW and 63% respectively were obtained. An optimum water to air flow ratio of 1.6 was obtained. The cooling tower was seen to have operated satisfactorily without packings. Keywords— cooling tower, cooling power, cooling efficiency, flow ratio, thermal energy


Vestnik MEI ◽  
2021 ◽  
pp. 37-43
Author(s):  
Vasiliy Ya. Gubarev ◽  
◽  
Aleksey G. Arzamastsev ◽  
Aleksey I. Sharapov ◽  
Yuliya O. Moreva ◽  
...  

In the channels of mechanical-draft cooling tower sprinklers, a saturated air flow section may appear under certain initial conditions, the mass transfer intensity in which is limited by the steam content in the saturated air. For correctly calculating the heat and mass transfer processes in the cooling tower channel, it is necessary to have a method for determining the unsaturated air flow section length. Publications devoted to studying water cooling processes in the channels of mechanical-draft cooling tower sprinklers do not contain an assessment of the unsaturated air flow section length. A method for determining the unsaturated humid air flow section length in the mechanical-draft cooling tower sprinkler channels is proposed, which is based on the well-known criterion equations for calculating the heat transfer and mass transfer coefficients. The effect the initial air parameters have on the unsaturated air section length is studied, and graphic dependences of the unsaturated air section length are drawn up for each of the analyzed parameters. It is shown that the unsaturated humid air flow section length increases with increasing the initial air temperature. It is also found that the unsaturated air flow section length decreases with a growth in the relative air humidity. An increase in the air flow rate with a constant water flow rate leads to an increase in the unsaturated air flow section length. For the considered sprinkler channel, the saturated air region exists at an air temperature of 15°C and below, and for air temperatures above 25°C there is no saturated air flow section. It is shown that the conclusions drawn about the effect the initial air parameters have on the relative change in the unsaturated air flow section length are valid for channels of various shapes and geometric sizes. The proposed methodology and the results obtained can be used in designing mechanical-draft cooling towers and estimating their efficiency.


2011 ◽  
Vol 383-390 ◽  
pp. 7746-7749 ◽  
Author(s):  
Wei Shun Huang ◽  
Ching Wei Chen ◽  
Cheng Wen Lee ◽  
Ching Liang Chen ◽  
Tien Shuen Jan ◽  
...  

The objective of the study is to focus on the application of the artificial neural network to configure a heat-radiating model for cooling towers within the parameters of fluctuating in air flow or cooling water flow. To achieve the objective, a cooling tower heat balancing equation have been used to instill the correlations between a cooling tower cooling load to the four predefined parameters. Based on the premise established, the parameters of a cooling tower’s air flow and cooling water flow in a modulated process are utilized in an experimental system for collecting relevant operating data. Lastly, the artificial neural network tool derived from the Matlab software is utilized to define the input parameters being – the cooling water temperature, ambient web-bulb temperature, cooling tower air flow, and cooling water flow, with an objective set to instilling a cooling tower model for defining a cooling tower cooling load. In addition, the tested figures are compared to the simulated figures for verifying the cooling tower model. By utilizing the method derived from the model, the mean error of between 0.72 and 2.13% is obtained, with R2 value rated at between 0.97 and 0.99. The experiment findings show a relatively high reliability that can be achieved for configuring a model by using the artificial neural network. With the support of an optimized computation method, the model can be applied as an optimization operating strategy for an air-conditioning system’s cooling water loop.


Sign in / Sign up

Export Citation Format

Share Document