Experimental Characterization of a Modified Airlift Pump

Author(s):  
Afshin Goharzadeh ◽  
Keegan Fernandes

This paper presents an experimental investigation on a modified airlift pump. Experiments were undertaken as a function of air-water flow rate for two submergence ratios (ε=0.58 and 0.74), and two different riser geometries (i) straight pipe with a constant inner diameter of 19 mm and (ii) enlarged pipe with a sudden expanded diameter of 19 to 32 mm. These transparent vertical pipes, of 1 m length, were submerged in a transparent rectangular tank (0.45×0.45×1.1 m3). The compressed air was injected into the vertical pipe to lift the water from the reservoir. The flow map regime is established for both configurations and compared with previous studies. The two phase air-water flow structure at the expansion region is experimentally characterized. Pipeline geometry is found to have a significant influence on the output water flow rate. Using high speed photography and electrical conductivity probes, new flow regimes, such as “slug to churn” and “annular to churn” flow, are observed and their influence on the output water flow rate and efficiency are discussed. These experimental results provide fundamental insights into the physics of modified airlift pump.

Author(s):  
Naoki Matsushita ◽  
Akinori Furukawa ◽  
Kusuo Okuma ◽  
Satoshi Watanabe

A tandem arrangement of double rotating cascades and single diffuser cascade, proposed as a centrifugal pump with high performance in air-water two-phase flow condition, yields lower head due to the smallness of the impeller outlet in comparison with a impeller with large outlet diameter and no diffuser. Influences of impeller diameter change and installation of diffuser blades on two-phase flow performance were experimentally investigated under the case of the same volute casing. As the result, the similarity law of the diameter of impeller having the similar blade geometry and the rotational speed is satisfied even in two-phase flow condition. Comparing pump performances between a large impeller without diffuser blades and a small one with diffuser blades, higher two-phase flow performance is obtained by controlling the rotational speed of a small impeller with diffuser blades in the range of small water flow rates, while a large impeller with no diffuser gives high performance in the range of high water flow rate and small air flow rate.


2016 ◽  
Vol 56 (2) ◽  
pp. 608
Author(s):  
Jie Yi ◽  
Huilin Xing ◽  
Tianwei Sun ◽  
Victor Rudolph

The production of coal seam gas initially requires pumping and removing significant amounts of water to sufficiently reduce the hydrostatic pressure in the subsurface, so that methane can desorb from the matrix and diffuse into the cleat systems; majority of the methane molecules gather into nucleation or bubbles. During the depression, the flow pattern of gas in cleats changes from bubble flow to slug flow, and finally forms circular flow. The significance of the bubble flow process—during which the liquid phase is continuous while the gas phase exists as small bubbles randomly distributed within the liquid—has not been emphasised because of its complexity. In this study, a free energy based two-phase lattice Boltzmann model is used to simulate the gas bubble/water flow behaviour in micro-cleats of a coal seam gas reservoir. The model was validated by comparison with analytical results based on dimensionless numbers, and good agreement was found in general. The influences of bubble shape, bubble size, and coal surface wettability on gas water two-phase flow in micro-cleats are discussed. The simulation results indicate that the bubble size and wettability of gas have significant impacts on the flow capacity of both gas and water. A decrease of the water flow rate is observed when large bubbles occur, and the gas flow rate decreases when the gas wettability becomes stronger. The bubble flow process significantly influences the drainage of water and the further gas production.


Author(s):  
Rodolfo Marcilli Perissinotto ◽  
William Monte Verde ◽  
Jorge Luiz Biazussi ◽  
Marcelo Souza de Castro ◽  
Antonio Carlos Bannwart

The objective of this research is to investigate the path of oil drops within an Electrical Submersible Pump (ESP) impeller, to evaluate its size and velocity as function of water flow rate and the ESP rotation speed. An experimental study was conducted at University of Campinas - Brazil with an ESP prototype designed to allow flow visualization within the impeller through a transparent shell. A high-speed camera with lighting set captures images of the oil droplets at a rate of 1000 frames per second. The set of data was performed at three rotational speeds — 600 rpm, 900 rpm and 1200 rpm — for three water flow rates — 80%, 100% and 120% of the best efficiency point (BEP). The results reveal that the oil drops become smaller when the rotational speed increases. The same behavior is noticed when the water flow rate increases. Generally, the oil droplets have spherical and elliptical shapes that change as function of their position inside the impeller channel. Furthermore, the drops have random trajectories, but a pattern can be detected in three cases: droplets near the pressure blade, droplets near the suction blade and droplets that move from the suction blade to the pressure blade. The average velocity of the oil droplets that move near the suction blade is significantly higher than the average velocity of the droplets that move near the pressure blade. Velocity changes as function of the impeller radius suggest different accelerations that may be caused by drag forces and pressure forces. The size of the oil drops has no significant influence on their velocities.


Author(s):  
Akinori Furukawa ◽  
Satoshi Ohshita ◽  
Kusuo Okuma ◽  
Satoshi Watanabe

A centrifugal impeller, the pumping action of which could be highly kept even at an air-water two-phase flow condition of inlet void fraction more than 30% in the region of relatively high water flow rate, has been developed. In the present paper, the design concept of two-phase flow impeller is described, at first, with experimental results. The short bladed forward impeller with high outlet blade angle was decided to keep theoretical head higher even in two-phase flow condition and to disperse the air accumulating region on the suction blade surface by the water jet flow coming from the pressure side. Furthermore, the tandem arrangement of outer and inner rotating cascades with the same blade numbers was adopted to suppress the rotating stall phenomena appearing in the case of a single stage of outer cascade. It should be noted that these results were obtained with operating a boost pump installed upstream of mixing section of air and water, that is not an actual operation of two-phase flow pump. Secondly, the operating characteristics of this two-phase flow pump with change of air flow rate were investigated experimentally without operating the boost pump. As the trajectory of operating point with increasing air flow rate appears along the resistance curve of piping system, the impossibility of pumping occurs at lower air flow rate even though pump head takes a positive value at high air flow rate with increasing water flow rate. It is recognized that it is necessary to improve two-phase flow head characteristic curves in the region of low water flow rate to operate in wider two-phase flow conditions.


2020 ◽  
Vol 152 ◽  
pp. 02001
Author(s):  
Javier Menéndez ◽  
Jorge Loredo

Underground pumped storage hydropower (UPSH) plants may be an alternative to store subsurface energy with lower environmental impacts than conventional pumped storage hydropower (PSH) plants. Network of tunnels in closed mines (i.e. coal mines) could be used as water lower reservoir of UPSH plants. The amount of storable energy depends on the water mass and the net head between upper and lower reservoirs. Depending on the direction of the water flow rate, pumping or turbine modes may be used to produce or consume electrical energy. Filling and emptying processes during the operation stage in the underground reservoir are complicated due to the presence of two fluids (water and air) interacting inside the network of tunnels. This paper explores the underground reservoir during the operation stage considering a water flow rate of 55 m3s-1. Two-phase three dimensional CFD numerical models using Ansys Fluent have been developed in order to know the behaviour of the air flow on tunnels and ventilation shaft. Static pressure and air velocity have been analyzed in the simulations at the exit of the ventilation shaft as well as the junction zone between the ventilation shaft and the tunnels network. The results obtained show that a static pressure up to 8,600 Pa and air velocities up to 80 m s-1 could be reached in turbine mode considering a vent shaft with 1 m in diameter. The static pressure increases up to 258,000 Pa if a ventilation shaft of 0.5 m in diameter is considered.


Author(s):  
Rodolfo Marcilli Perissinotto ◽  
William Monte Verde ◽  
Jorge Luiz Biazussi ◽  
Marcelo Souza de Castro ◽  
Antonio Carlos Bannwart

The objective of this research is to investigate the velocity of oil drops within the impeller of an electrical submersible pump (ESP) working with oil-in-water dispersion flows at different operational conditions. An experimental study was conducted using an ESP prototype with a transparent shell designed to enable flow visualization within the impeller channels. The tests were performed at three rotational speeds, 600, 900, and 1200 rpm, for three water flow rates, 80%, 100%, and 120% of the best efficiency point (BEP). A high-speed camera (HSC) with a lighting set captured images of the oil-in-water dispersion at 1000 frames per second. The images observation suggests the presence of a turbulent flow in the impeller. The turbulence, associated with high rotation Reynolds numbers, causes the oil drops to become smaller as the impeller rotational speed and the water flow rate increase. Despite this rotating environment, the oil drops generally have a spherical shape. Regarding the kinematics, the images processing reveals that the velocity of oil drops has a magnitude around a unit of m/s. The velocity depends on the oil drop position in the channel: oil drops that stay close to a suction blade (SB) have significantly higher velocities than oil drops that stay close to a pressure blade (PB). Considering a complex flow with water velocity profiles and pressure gradients, the analysis of oil velocity curves indicates the occurrence of accelerations that may be caused by drag and pressure forces acting on the oil drops.


2015 ◽  
Vol 41 (3) ◽  
pp. 264-267 ◽  
Author(s):  
Khalil Aleisa ◽  
Abdullah Alkeraidis ◽  
Ziad Nawaf Al-Dwairi ◽  
Hamdi Altahawi ◽  
Edward Lynch

The purpose of the study was to evaluate the effect of water flow rate on the heat transmission in implants during abutment preparation using a diamond bur in a high-speed dental turbine. Titanium-alloy abutments (n = 32) were connected to a titanium-alloy implant embedded in an acrylic resin within a water bath at a controlled temperature of 37°C. The specimens were equally distributed into 2 groups (16 each) according to the water flow rate used during the preparation phase. Group 1 had a water flow rate of 24 mL/min, and group 2 had a water flow rate of 40 mL/min. Each abutment was prepared in the axial plane for 1 minute and in the occlusal plane for 1 minute with a coarse tapered diamond bur using a high-speed dental handpiece. Thermocouples embedded at the cervix of the implant surface were used to record the temperature of heat transmission from the abutment preparation. Heat generation was measured at 3 distinct times (immediately and 30 seconds and 60 seconds after the end of preparation). Statistical analyses were carried out using 2-way analysis of variance and the Student t test. Water flow rates (24 mL vs 40 mL) and time interval had no statistically significant effect on the implant's temperature change during the abutment preparation stage (P = .431 and P = .064, respectively). Increasing the water flow rate from 24 to 40 mL/min had no influence on the temperature of the implant fixture recorded during preparation of the abutment.


Author(s):  
Feras Z. Batarseh ◽  
Ilia V. Roisman ◽  
Cam Tropea

We present an experimental investigation of a spray generated by an airblast atomizer. Experiments have been performed in a pressure chamber equipped by transparent windows allowing an optical access to the spray. Several techniques of spray investigation have been applied: spray visualization using the high-speed video system, spray visualization and instantaneous velocity measurements using the PIV technique, spray velocimetry and sizing using the IPI and phase Doppler instruments. Phase Doppler instrument has been used to characterize the droplets in the spray: their diameter, two components of the velocity vector. Also the integral parameters of the spray, such as the local volume flux density, have been characterized. We conduct a parametric study of the effect of the ambient pressure, the air flow rate and the water flow rate on an atomized spray. Measurements at different radial locations in the spray and in two planes were performed. The measurements in these two planes allow one to determine the distributions of all the three components of the average drop velocity vector: axial, radial and azimuthal. PDA measurements show that atomized spray is sensitive to any change in the studied parameters. For example, increasing air flow rate from 20 SCMH to 45 SCMH and keeping same water flow rate and pressure, leads to an increase in all velocity components and also to a change in droplets diameters. On the other hand, keeping constant pressure and air flow rate and increasing water flow rate from 0.7 to 1.4 l/hr, leads to an increase in water droplets sizes and the axial velocity component, whereas the other velocity components show a non uniform change. Moreover, increasing the ambient pressure leads to the growth of the spray velocity and drops diameters.


Author(s):  
S. Zeguai ◽  
S. Chikh ◽  
O. Rahli ◽  
L. Tadrist

An experimental apparatus is setup to analyze a two phase air-water upward flow in a vertical tube with an inner diameter of 3 mm. Air is axially injected through a microduct of 260 μm inner diameter. Various inlet conditions for air pressure and water flow rate are tested covering a wide range of superficial velocities JL = 0.221 to 0.312 m/s and JG = 0.061 to 0.083 m/s for a given position of air injection (x = 8cm). A fast camera with 250 fps is used to visualize different flow regimes. Experiments showed that the flow type is very sensitive to inlet conditions and several flow regimes were observed namely: the bubbly flow, the slug flow and the annular flow.


Sign in / Sign up

Export Citation Format

Share Document