Multiscale Analysis Revealing the Lateral Variation of Soil Strength from S-Wave Reflection Data

Author(s):  
R. Ghose ◽  
J.C.M. Goudswaard
Geophysics ◽  
2004 ◽  
Vol 69 (2) ◽  
pp. 440-459 ◽  
Author(s):  
Ranajit Ghose ◽  
Jeroen Goudswaard

A cone penetration test (CPT) is the most common geotechnical testing method used to estimate in situ the strength properties of soil. Although CPT provides valuable information, this information is restricted to the location of the measurement. We propose a new concept to integrate shallow S‐wave reflection seismic data with CPT data in order to obtain laterally continuous subsoil information. In this vein, a valid quantitative means to relate seismic reflections to CPT data is a primary requirement. The approach proposed here is based on the characterization of the scaling behavior of the local fine‐scale S‐wave velocity information extracted from the seismic reflection data and the same behavior of the CPT cone resistance. The local velocity contrast information is extracted by linearized Zoeppritz inversion of the amplitude‐preserved prestack reflection data. We have formulated a multiscale analysis approach employing the continuous wavelet transform in order to quantitatively characterize the nature of change at an interface of the local S‐wave velocity contrast and the CPT cone resistance and to illuminate any relation between these two. The multiscale analysis estimates the singularity parameter α, which indicates the nature of the interfacial change. The application of our method to the field data has uncovered a striking relation between the nature of variation of the local S‐wave velocity contrast and that of CPT cone resistance; otherwise, such a relation was not visible. Detailed analyses of two extensive field datasets have shown that the lateral fine‐scale variation of soil strength, as seen by CPT cone resistance, has a close resemblance with the variation of the local S‐wave velocity function as seen by angle‐dependent reflection measurements. This leads to a unique possibility to integrate two very different in‐situ measurements—reflection seismic and CPT—providing laterally continuous detailed information of the soil layer boundaries.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. IM97-IM108 ◽  
Author(s):  
João Carvalho ◽  
Ranajit Ghose ◽  
Daniela Alves ◽  
Jaime Leote

Expressions of ductile, soft-sediment deformations induced by ground movements due to past earthquakes are difficult to recognize in near-surface soils. We have carried out shallow S-wave reflection studies in a seismically active area located northeast of metropolitan Lisbon, Portugal. Identifying shallow disturbed zones and hidden fault segments in this area is important but quite difficult because of small vertical slips due to earthquakes, the Holocene alluvial cover hiding the fault segments, and a high rate of surficial sedimentation. We have performed S-wave reflection profiling at two sites — Vila Franca Xira and Castanheira de Ribatejo. We detected different but interrelated evidence of soft-sediment deformation in the seismic data. This evidence includes sharp lateral changes in the S-wave velocity field; changes in the reflection horizons in stacked sections; aligned diffractions in unmigrated sections; discontinuities in common-offset gathers; and discontinuities, backscattered, and diffracted arrivals in common-source gathers. Though not equally clear everywhere, this evidence is recognizable at many locations where earthquake-motion-induced disturbed zones are interpreted. To confirm these interpretations, we have performed synthetic modeling of a seismic wavefield using the same acquisition geometry as in the field experiments, and with multiple disturbed zones present as vertical emplacements through horizontally lying soil layers. The modeling results resemble the observations in field data. It is possible to confirm the signatures of soft-sediment deformation in the shallow S-wave reflection data. The approach that we used will be useful in many seismically active, soil-covered areas in the world.


Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. EN13-EN25 ◽  
Author(s):  
Laura Amalia Konstantaki ◽  
Ranajit Ghose ◽  
Deyan Draganov ◽  
Giovanni Diaferia ◽  
Timo Heimovaara

Understanding the processes occurring inside a landfill is important for improving the treatment of landfills. Irrigation and recirculation of leachate are widely used in landfill treatments. Increasing the efficiency of such treatments requires a detailed understanding of the flow inside the landfill. The flow depends largely on the heterogeneous distribution of density. It is, therefore, of great practical interest to determine the density distribution affecting the flow paths inside a landfill. Studies in the past have characterized landfill sites but have not led to high-resolution, detailed quantitative results. We performed an S-wave reflection survey, multichannel analysis of surface waves (MASW), and electrical resistivity survey to investigate the possibility of delineating the heterogeneity distribution in the body of a landfill. We found that the high-resolution S-wave reflection method offers the desired resolution. However, in the case of a very heterogeneous landfill and a high noise level, the processing of high-resolution, shallow reflection data required special care. In comparison, MASW gave the general trend of the changes inside the landfill, whereas the electrical resistivity (ER) survey provides useful clues for interpretation of seismic reflection data. We found that it is possible to localize fine-scale heterogeneities in the landfill using the S-wave reflection method using a high-frequency vibratory source. Using empirical relations specific to landfill sites, we then estimated the density distribution inside the landfill, along with the associated uncertainty considering different methods. The final interpretation was guided by supplementary information provided by MASW and ER tomography.


Geophysics ◽  
2021 ◽  
pp. 1-74
Author(s):  
Iury Araújo ◽  
Murillo Nascimento ◽  
Jesse Costa ◽  
Alan Souza ◽  
Jörg Schleicher

We present a procedure to derive low-rank evolution operators in the mixed space-wavenumber domain for modeling the qP Born-scattered wavefield at perturbations of an anisotropic medium under the pseudo-acoustic approximation. To approximate the full wavefield, this scattered field is then added to the reference wavefield obtained with the corresponding low-rank evolution operator in the background medium. Being built upon a Hamiltonian formulation using the dispersion relation for qP waves, this procedure avoids pseudo-S-wave artifacts and provides a unified approach for linearizing anisotropic pseudo-acoustic evolution operators. Therefore it is immediately applicable to any arbitrary class of anisotropy. As an additional asset, the scattering operators explicitly contain the sensitivity kernels of the Born-scattered wavefield with respect to the anisotropic medium parameters. This enables direct access to important information like its offset dependence or directional characteristics as a function of the individual parameter perturbations. For our numerical tests, we specify the operators for a mildly anisotropic tilted transversly isotropic (TTI) medium. We validate our implementation in a simple model with weak contrasts and simulate reflection data in the BP TTI model to show that the procedure works in a more realistic scenario. The Born-scattering results indicate that our procedure is applicable to strongly heterogeneous anisotropic media. Moreover, we use the analytical capabilities of the kernels by means of sensitivity tests to demonstrate that using two different medium parameterizations leads to different results. The mathematical formulation of the method is such that it allows for an immediate application to least-squares migration in pseudo-acoustic anisotropic media.


Geophysics ◽  
2002 ◽  
Vol 67 (3) ◽  
pp. 690-700 ◽  
Author(s):  
Josef Holzschuh

Compressional (P) wave and shear (S) wave seismic reflection techniques were used to delineate the sand and gravel aquifer within a highly saline clay‐filled paleochannel in the Eastern Goldfields of Western Australia. The seismic refraction and gravity methods were also used to investigate the paleochannel. The unsaturated loose fine‐grained sand up to 10 m in depth at the surface is a major factor in degrading subsurface imaging. The seismic processing needed to be precise, with accurate static corrections and normal moveout corrections. Deconvolution enhanced the aquifer and other paleochannel reflectors. P‐wave reflection and refraction layer depths had good correlation and showed a total of six boundaries: (1) water table, (2) change in velocity (compaction) in the paleochannel sediments, (3) sand and gravel aquifer, (4) red‐brown saprolite and green saprolite boundary, (5) weathered bedrock, and (6) unweathered bedrock. P‐wave explosive and hammer sources were found to have similar signal characteristics, and the aquifer and bedrock were both imaged using the hammer source. The deep shots below the water table have the most broadband frequency response for reflections, but stacking clear reflections was difficult. The S‐wave reflection results showed high lateral and vertical resolution of the basal saprolite clay, the sand and gravel aquifer, and very shallow clays above the aquifer. The S‐wave reflection stacking velocities were 10–20% of the P‐waves, increasing the resolution of the S‐wave section. The gravity data were modelled to fit the known drilling and P‐wave seismic reflection depths. The refraction results did not identify the top of bedrock, so refraction depths were not used for the gravity modeling in this highly weathered environment. The final gravity model mapped the bedrock topography beyond the lateral extent of the seismic and drilling data.


1999 ◽  
Vol 15 (3) ◽  
pp. 565-584 ◽  
Author(s):  
Robert A. Williams ◽  
William J. Stephenson ◽  
Arthur D. Frankel ◽  
Jack K. Odum

We measured P- and S-wave seismic velocities to about 40-m depth using seismic-refraction/reflection data on the ground surface at 13 sites in the Seattle, Washington, urban area, where portable digital seismographs recently recorded earthquakes. Sites with the lowest measured Vs correlate with highest ground motion amplification. These sites, such as at Harbor Island and in the Duwamish River industrial area (DRIA) south of the Kingdome, have an average Vs in the upper 30 m (V¯s30) of 150 to 170 m/s. These values of V¯s30 place these sites in soil profile type E (V¯s30 < 180 m/s). A “rock” site, located at Seward Park on Tertiary sedimentary deposits, has a V¯s30 of 433 m/s, which is soil type C (V¯s30: 360 to 760 m/s). The Seward Park site V¯s30 is about equal to, or up to 200 m/s slower than sites that were located on till or glacial outwash. High-amplitude P- and S-wave seismic reflections at several locations appear to correspond to strong resonances observed in earthquake spectra. An S-wave reflector at the Kingdome at about 17 to 22 m depth probably causes strong 2-Hz resonance that is observed in the earthquake data near the Kingdome.


Sign in / Sign up

Export Citation Format

Share Document