Processing Wide Azimuth P-Wave Seismic Data for Fracture Detection

Author(s):  
A. Pelham
2006 ◽  
Author(s):  
Zhongping Qian ◽  
Xiang‐Yang Li ◽  
Enru Liu ◽  
Shangxu Wang ◽  
Shoudong Wang

2009 ◽  
Author(s):  
A. M. Ekanem ◽  
J. Wei ◽  
S. Wang ◽  
B. Di ◽  
X‐Y Li ◽  
...  

2013 ◽  
Vol 1 (2) ◽  
pp. T199-T209
Author(s):  
David Cho ◽  
Craig Coulombe ◽  
Scott McLaren ◽  
Kevin Johnson ◽  
Gary F. Margrave

Direct methods for fracture detection using P-wave seismic data typically require an azimuthal analysis of the reflected wavefield. However, conventional data acquisition practices often lack sufficient azimuthal coverage for proper application of these techniques. In such cases, alternative methods become necessary. We investigated the use of subsurface properties estimated from seismic data under isotropic assumptions to delineate fracture systems in the Second White Speckled Shale of Alberta, Canada. We implemented two methodologies for fracture detection. (1) Using seismic attributes sensitive to the structure of the seismic image, structural changes such as folds were identified, from which the associated fracture systems can be inferred. (2) For fractures not directly correlated to such structural changes, analysis of the effective elastic properties of fractured media proved useful. In particular, failure criteria and effective-medium theories were used to investigate fracture phenomena and their corresponding seismic response. Using standard isotropic inversion techniques, estimates of reservoir elastic properties were derived. Subsequently, an interpretation of these results was conducted through consideration of anisotropic models. Specifically, low values of Poisson’s ratio were interpreted as more favorable conditions for fracturing and low values of Young’s modulus and vertical P-wave velocity were interpreted as direct indicators for the presence of fractures. The structural analysis identified a subtle fold where fracturing in its vicinity can be inferred. Furthermore, investigation into the elastic properties of fractured media revealed locations on the flanks of the fold that were likely to be fractured, providing an indication of the lateral extent of fracturing that was not possible from structural attributes alone. The combined interpretation of these results suggested the existence of a contractional fault-bend fold, where an area at the crest of the fold did not appear to contain fractures, corresponding to the undeformed zone as predicted by structural models of fault-bend folding.


Geophysics ◽  
2002 ◽  
Vol 67 (2) ◽  
pp. 355-364 ◽  
Author(s):  
Feng Shen ◽  
Jesus Sierra ◽  
Daniel R. Burns ◽  
M. Nafi Toksöz

Offset‐dependent attributes—amplitude versus offset (AVO) and frequency versus offset—are extracted from 2‐D P‐wave seismic data using the multiple signal classification technique. These attributes are used to detect fracture orientation in a carbonate reservoir located in the Maporal field in the Barinas basin of southwestern Venezuela. In the fracture normal direction, P‐wave reflectivity is characterized by a large increase of amplitude with offset (large positive AVO gradient) and a large decrease of frequency with offset (large negative frequency versus offset gradient). In the fracture strike direction, P‐wave reflectivity shows a scattered variation in AVO but a small variation in frequency with offset. Our results also show that the reservoir heterogeneity can lead to large variations of AVO signatures and that using azimuthal offset‐dependent frequency attributes can help lessen the ambiguity when detecting fracture orientation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gaochun Wang ◽  
Hans Thybo ◽  
Irina M. Artemieva

AbstractAll models of the magmatic and plate tectonic processes that create continental crust predict the presence of a mafic lower crust. Earlier proposed crustal doubling in Tibet and the Himalayas by underthrusting of the Indian plate requires the presence of a mafic layer with high seismic P-wave velocity (Vp > 7.0 km/s) above the Moho. Our new seismic data demonstrates that some of the thickest crust on Earth in the middle Lhasa Terrane has exceptionally low velocity (Vp < 6.7 km/s) throughout the whole 80 km thick crust. Observed deep crustal earthquakes throughout the crustal column and thick lithosphere from seismic tomography imply low temperature crust. Therefore, the whole crust must consist of felsic rocks as any mafic layer would have high velocity unless the temperature of the crust were high. Our results form basis for alternative models for the formation of extremely thick juvenile crust with predominantly felsic composition in continental collision zones.


2003 ◽  
Vol 22 (7) ◽  
pp. 680-683 ◽  
Author(s):  
Xiang-Yang Li ◽  
Yi-Jie Liu ◽  
Enru Liu ◽  
Feng Shen ◽  
Li Qi ◽  
...  

Geophysics ◽  
1988 ◽  
Vol 53 (1) ◽  
pp. 76-84 ◽  
Author(s):  
E. L. Majer ◽  
T. V. McEvilly ◽  
F. S. Eastwood ◽  
L. R. Myer

In a pilot vertical seismic profiling study, P-wave and cross‐polarized S-wave vibrators were used to investigate the potential utility of shear‐wave anisotropy measurements in characterizing a fractured rock mass. The caprock at The Geysers geothermal field was found to exhibit about an 11 percent velocity variation between SH-waves and SV-waves generated by rotating the S-wave vibrator orientation to two orthogonal polarizations for each survey level in the well. The effect is generally consistent with the equivalent anisotropy expected from the known fracture geometry.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. KS207-KS217 ◽  
Author(s):  
Jeremy D. Pesicek ◽  
Konrad Cieślik ◽  
Marc-André Lambert ◽  
Pedro Carrillo ◽  
Brad Birkelo

We have determined source mechanisms for nine high-quality microseismic events induced during hydraulic fracturing of the Montney Shale in Canada. Seismic data were recorded using a dense regularly spaced grid of sensors at the surface. The design and geometry of the survey are such that the recorded P-wave amplitudes essentially map the upper focal hemisphere, allowing the source mechanism to be interpreted directly from the data. Given the inherent difficulties of computing reliable moment tensors (MTs) from high-frequency microseismic data, the surface amplitude and polarity maps provide important additional confirmation of the source mechanisms. This is especially critical when interpreting non-shear source processes, which are notoriously susceptible to artifacts due to incomplete or inaccurate source modeling. We have found that most of the nine events contain significant non-double-couple (DC) components, as evident in the surface amplitude data and the resulting MT models. Furthermore, we found that source models that are constrained to be purely shear do not explain the data for most events. Thus, even though non-DC components of MTs can often be attributed to modeling artifacts, we argue that they are required by the data in some cases, and can be reliably computed and confidently interpreted under favorable conditions.


2021 ◽  
Author(s):  
Anke Dannowski ◽  
Heidrun Kopp ◽  
Ingo Grevemeyer ◽  
Grazia Caielli ◽  
Roberto de Franco ◽  
...  

&lt;p&gt;The Ligurian Basin is located north-west of Corsica at the transition from the western Alpine orogen to the Apennine system. The Back-arc basin was generated by the southeast retreat of the Apennines-Calabrian subduction zone. The opening took place from late Oligocene to Miocene. While the extension led to extreme continental thinning little is known about the style of back-arc rifting. Today, seismicity indicates the closure of this back-arc basin. In the basin, earthquake clusters occur in the lower crust and uppermost mantle and are related to re-activated, inverted, normal faults created during rifting.&lt;/p&gt;&lt;p&gt;To shed light on the present day crustal and lithospheric architecture of the Ligurian Basin, active seismic data have been recorded on short period ocean bottom seismometers in the framework of SPP2017 4D-MB, the German component of AlpArray. An amphibious refraction seismic profile was shot across the Ligurian Basin in an E-W direction from the Gulf of Lion to Corsica. The profile comprises 35 OBS and three land stations at Corsica to give a complete image of the continental thinning including the necking zone.&lt;/p&gt;&lt;p&gt;The majority of the refraction seismic data show mantle phases with offsets up to 70 km. The arrivals of seismic phases were picked and used to generate a 2-D P-wave velocity model. The results show a crust-mantle boundary in the central basin at ~12 km depth below sea surface. The P-wave velocities in the crust reach 6.6 km/s at the base. The uppermost mantle shows velocities &gt;7.8 km/s. The crust-mantle boundary becomes shallower from ~18 km to ~12 km depth within 30 km from Corsica towards the basin centre. The velocity model does not reveal an axial valley as expected for oceanic spreading. Further, it is difficult to interpret the seismic data whether the continental lithosphere was thinned until the mantle was exposed to the seafloor. However, an extremely thinned continental crust indicates a long lasting rifting process that possibly did not initiate oceanic spreading before the opening of the Ligurian Basin stopped. The distribution of earthquakes and their fault plane solutions, projected along our seismic velocity model, is in-line with the counter-clockwise opening of the Ligurian Basin.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document