3D Interpolation and Extrapolation of Sparse Well Data Using Rock Physics Principles - Applications to Anisotropic VMB

Author(s):  
R. Bachrach ◽  
K. Osypov
Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. MR111-MR119
Author(s):  
Uri Wollner ◽  
Jack P. Dvorkin

The elastic moduli of the mineral constituents of the rock matrix are among the principal inputs in all rock-physics velocity-porosity-mineralogy models. Published experimental data indicate that the elastic moduli for essentially any mineral vary. The ranges of these variations are especially wide for clay. The question addressed here is how to select, based on well data, concrete values for clay’s elastic constants where those for other minerals are fixed. The approach is to find a rock-physics model for zero-clay intervals and then adjust the clay’s constants to describe the intervals dominated by clay using the same model. We examine three data sets from clastic environments, each represented by three wells, where the selected constants for clay were different between the fields but stable within each field. These constants can then be used for seismic forward modeling and interpretation in a specific field away from well control and within a depth range represented in the wells. In essence, we introduce the concept of elastic mineral facies where we identify clay as a mineral with certain elastic moduli rather than by its chemical formula.


2016 ◽  
Vol 56 (1) ◽  
pp. 203
Author(s):  
James Shadlow ◽  
Adam Craig ◽  
David Christiansen

In short, yes. This case study illustrates that the application of a thorough geotechnical workflow incorporating many new and advanced techniques can assist in exploration business case decision making. Is an exploration drilling decision made lightly? A workflow incorporating 3D seismic processing, AVO inversion and stratigraphic framework studies involving high-resolution biostratigraphic and chemostratigraphic analyses was used to assess the prospectivity of an exploration permit near giant gas fields in the offshore Northern Carnarvon Basin. The primary reservoir is the prolific Triassic Mungaroo Formation fluvio-deltaic sediments, and secondary reservoirs include mid-Jurassic marine sands. 3D seismic reprocessing xcombined a newly acquired broadband seismic dataset into a multi-survey multi-azimuth PSDM volume that conditioned data for input to an AVO inversion. New petrophysics and rock physics analysis and modelling on regional well data were then calibrated with the AVO inversion to statistically derive lithology and fluid prediction volumes. These data were used in conjunction with reservoir paleo-stratigraphy studies to derive a subsurface model for reservoir distribution and hydrocarbon prediction. A two-stage risking process was applied to each prospect that objectively applied risk based on the seismic amplitudes. This enabled a more accurate risked-volume assessment, combined with the ability to assess a prospect portfolio covering different plays. The resultant interpretation identified issues with interpretations made on vintage data that would not have been easily identified without undertaking these studies. The integration of these assessments resulted in an unfavourable exploration drilling business case and a decision not to renew the permit.


2020 ◽  
Vol 39 (3) ◽  
pp. 176-181
Author(s):  
Jun Liu ◽  
Donghai Liang ◽  
Guangrong Peng ◽  
Xiaomin Ruan ◽  
Yingwei Li ◽  
...  

In the Enping 17 sag within the Pearl River Mouth Basin in the South China Sea, one wildcat well has been drilled to the Lower Paleogene Enping Formation (FM EP) and partially into the Wenchang Formation (FM WC) for deep formation hydrocarbon exploration. However, no commercial play was discovered. The reasons for this are clear if the petroleum systems modeling is examined. In FM EP, the main reason for failure is due to poor sealing. In FM WC, the failure is due to the lack of a good reservoir for hydrocarbon accumulation. Encountering a 9 m thick reservoir at a depth of 4650 m indicates that braided fluvial delta and lowstand turbidite sandstone may develop in FM WC. With the objective of establishing cap rock in FM EP and reservoir rock in FM WC, and in the absence of sufficient well data, an integrated framework for 3D seismic reservoir characterization of offshore deep and thin layers was developed. The workflow includes seismic data reprocessing, well-log-based rock-physics analysis, seismic structure interpretation, simultaneous amplitude variation with offset (AVO) inversion, 3D lithology prediction, and geologic integrated analysis. We present four key solutions to address four specific challenges in this case study: (1) the application of adaptive deghosting techniques to remove the source and streamer depth-related ghost notches in the seismic data bandwidth and the relative amplitude-preserved bandwidth extension technique to improve the seismic data resolution; (2) a practical rock-physics modeling approach to consider the formation overpressure for pseudoshear sonic log prediction; (3) interactive and synchronized workflow between prestack 3D AVO inversion and seismic processing to predict a 9 m thick layer in FM WC through more than 60 rounds of cyclic tests; and (4) cross validation between seismic qualitative attributes and quantitative inversion results to verify the lithology prediction result under the condition of insufficient well data.


2021 ◽  
Vol 40 (12) ◽  
pp. 897-904
Author(s):  
Manuel González-Quijano ◽  
Gregor Baechle ◽  
Miguel Yanez ◽  
Freddy Obregon ◽  
Carmen Vito ◽  
...  

The study area is located in middepth to deep waters of the Salina del Istmo Basin where Repsol operates Block 29. The objective of this work is to integrate qualitative and quantitative interpretations of rock and seismic data to predict lithology and fluid of the Early Miocene prospects. The seismic expression of those prospects differs from age-equivalent well-studied analog fields in the U.S. Gulf of Mexico Basin due to the mineralogically complex composition of abundant extrusive volcanic material. Offset well data (i.e., core, logs, and cuttings) were used to discriminate lithology types and to quantify mineralogy. This analysis served as input for developing a new rock-physics framework and performing amplitude variation with offset (AVO) modeling. The results indicate that the combination of intercept and gradient makes it possible to discriminate hydrocarbon-filled (AVO class II and III) versus nonhydrocarbon-filled rocks (AVO class 0 and IV). Different lithologies within hydrocarbon-bearing reservoirs cannot be discriminated as the gradient remains negative for all rock types. However, AVO analysis allows discrimination of three different reservoir rock types in water-bearing cases (AVO class 0, I, and IV). These conclusions were obtained during studies conducted in 2018–2019 and were used in prospect evaluation to select drilling locations leading to two wildcat discoveries, the Polok and Chinwol prospects, drilled in Block 29 in 2020.


Geophysics ◽  
2010 ◽  
Vol 75 (4) ◽  
pp. D27-D36 ◽  
Author(s):  
Andrey Bakulin ◽  
Marta Woodward ◽  
Dave Nichols ◽  
Konstantin Osypov ◽  
Olga Zdraveva

Tilted transverse isotropy (TTI) is increasingly recognized as a more geologically plausible description of anisotropy in sedimentary formations than vertical transverse isotropy (VTI). Although model-building approaches for VTI media are well understood, similar approaches for TTI media are in their infancy, even when the symmetry-axis direction is assumed known. We describe a tomographic approach that builds localized anisotropic models by jointly inverting surface-seismic and well data. We present a synthetic data example of anisotropic tomography applied to a layered TTI model with a symmetry-axis tilt of 45 degrees. We demonstrate three scenarios for constraining the solution. In the first scenario, velocity along the symmetry axis is known and tomography inverts for Thomsen’s [Formula: see text] and [Formula: see text] parame-ters. In the second scenario, tomography inverts for [Formula: see text], [Formula: see text], and velocity, using surface-seismic data and vertical check-shot traveltimes. In contrast to the VTI case, both these inversions are nonunique. To combat nonuniqueness, in the third scenario, we supplement check-shot and seismic data with the [Formula: see text] profile from an offset well. This allows recovery of the correct profiles for velocity along the symmetry axis and [Formula: see text]. We conclude that TTI is more ambiguous than VTI for model building. Additional well data or rock-physics assumptions may be required to constrain the tomography and arrive at geologically plausible TTI models. Furthermore, we demonstrate that VTI models with atypical Thomsen parameters can also fit the same joint seismic and check-shot data set. In this case, although imaging with VTI models can focus the TTI data and match vertical event depths, it leads to substantial lateral mispositioning of the reflections.


2014 ◽  
Author(s):  
Jingjing Li* ◽  
Chengyu Sun ◽  
Hui Xu ◽  
Jinrong Fu ◽  
Xinrong Chen

Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. ID19-ID34
Author(s):  
Anshuman Pradhan ◽  
Nader C. Dutta ◽  
Huy Q. Le ◽  
Biondo Biondi ◽  
Tapan Mukerji

We have introduced a methodology for quantifying seismic velocity and pore-pressure uncertainty that incorporates information regarding the geologic history of a basin, rock physics, well log, drilling, and seismic data. In particular, our approach relies on linking velocity models to the basin modeling outputs of porosity, mineral volume fractions, and pore pressure through rock-physics models. We account for geologic uncertainty by defining prior probability distributions on lithology-specific porosity compaction model parameters, permeability-porosity model parameters, and heat-flow boundary condition. Monte Carlo basin simulations are performed by sampling the prior uncertainty space. We perform probabilistic calibration of the basin model outputs by defining data likelihood distributions to represent well data uncertainty. Rock physics modeling transforms the basin modeling outputs to give us multiple velocity realizations used to perform multiple depth migrations. We have developed an approximate Bayesian inference framework that uses migration velocity analysis in conjunction with well data for updating velocity and basin modeling uncertainty. We apply our methodology in 2D to a real field case from the Gulf of Mexico; our methodology allows for building a geologic and physical model space for velocity and pore-pressure prediction with reduced uncertainty.


SPE Journal ◽  
2008 ◽  
Vol 13 (04) ◽  
pp. 412-422
Author(s):  
Subhash Kalla ◽  
Christopher D. White ◽  
James Gunning ◽  
Michael Glinsky

Summary Accurate reservoir simulation requires data-rich geomodels. In this paper, geomodels integrate stochastic seismic inversion results (for means and variances of packages of meter-scale beds), geologic modeling (for a framework and priors), rock physics (to relate seismic to flow properties), and geostatistics (for spatially correlated variability). These elements are combined in a Bayesian framework. The proposed workflow produces models with plausible bedding geometries, where each geomodel agrees with seismic data to the level consistent with the signal-to-noise ratio of the inversion. An ensemble of subseismic models estimates the means and variances of properties throughout the flow simulation grid. Grid geometries with possible pinchouts can be simulated using auxiliary variables in a Markov chain Monte Carlo (MCMC) method. Efficient implementations of this method require a posterior covariance matrix for layer thicknesses. Under assumptions that are not too restrictive, the inverse of the posterior covariance matrix can be approximated as a Toeplitz matrix, which makes the MCMC calculations efficient. The proposed method is examined using two-layer examples. Then, convergence is demonstrated for a synthetic 3D, 10,000 trace, 10 layer cornerpoint model. Performance is acceptable. The Bayesian framework introduces plausible subseismic features into flow models, whilst avoiding overconstraining to seismic data, well data, or the conceptual geologic model. The methods outlined in this paper for honoring probabilistic constraints on total thickness are general, and need not be confined to thickness data obtained from seismic inversion: Any spatially dense estimates of total thickness and its variance can be used, or the truncated geostatistical model could be used without any dense constraints. Introduction Reservoir simulation models are constructed from sparse well data and dense seismic data, using geologic concepts to constrain stratigraphy and property variations. Reservoir models should integrate spare, precise well data and dense, imprecise seismic data. Because of the sparseness of well data, stochastically inverted seismic data can improve estimates of reservoir geometry and average properties. Although seismic data are densely distributed compared to well data, they are uninformative about meter-scale features. Beds thinner than about 1/8 to 1/4 the dominant seismic wavelength cannot be resolved in seismic surveys (Dobrin and Savit 1988; Widess 1973). For depths of ˜3000 m, the maximum frequency in the signal is typically about 40 Hz, and for average velocities of ˜2,000 m/s, this translates to best resolutions of about 10 m. Besides the limited resolution, seismic-derived depths and thicknesses are uncertain because of noise in the seismic data and uncertainty in the rock physics models (Gunning and Glinsky 2004, 2006). This resolution limit and uncertainties associated with seismic depth and thickness estimates have commonly limited the use of seismic data to either inferring the external geometry or guiding modeling of plausible stratigraphic architectures of reservoirs (Deutsch et al. 1996). In contrast, well data reveal fine-scale features but cannot specify interwell geometry. To build a consistent model, conceptual stacking and facies models must be constrained by well and seismic data. The resulting geomodels must be gridded for flow simulation using methods that describe stratal architecture flexibly and efficiently.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. MR121-MR132 ◽  
Author(s):  
Uri Wollner ◽  
Yunfei Yang ◽  
Jack P. Dvorkin

Seismic reflections depend on the contrasts of the elastic properties of the subsurface and their 3D geometry. As a result, interpreting seismic data for petrophysical rock properties requires a theoretical rock-physics model that links the seismic response to a rock’s velocity and density. Such a model is based on controlled experiments in which the petrophysical and elastic rock properties are measured on the same samples, such as in the wellbore. Using data from three wells drilled through a clastic offshore gas reservoir, we establish a theoretical rock-physics model that quantitatively explains these data. The modeling is based on the assumption that only three minerals are present: quartz, clay, and feldspar. To have a single rock-physics transform to quantify the well data in the entire intervals under examination in all three wells, we introduced field-specific elastic moduli for the clay. We then used the model to correct the measured shear-wave velocity because it appeared to be unreasonably low. The resulting model-derived Poisson’s ratio is much smaller than the measured ratio, especially in the reservoir. The associated synthetic amplitude variation with offset response appears to be consistent with the recorded seismic angle stacks. We have shown how rock-physics modeling not only helps us to correct the well data, but also allows us to go beyond the settings represented in the wells and quantify the seismic signatures of rock properties and conditions varying in a wider range using forward seismic modeling.


Sign in / Sign up

Export Citation Format

Share Document