Improvement in TDEM interpretations by joint inversion of different data sets

1997 ◽  
Author(s):  
S. Krivochieva ◽  
M. Chouteau
Keyword(s):  
Geophysics ◽  
2011 ◽  
Vol 76 (4) ◽  
pp. F239-F250 ◽  
Author(s):  
Fernando A. Monteiro Santos ◽  
Hesham M. El-Kaliouby

Joint or sequential inversion of direct current resistivity (DCR) and time-domain electromagnetic (TDEM) data commonly are performed for individual soundings assuming layered earth models. DCR and TDEM have different and complementary sensitivity to resistive and conductive structures, making them suitable methods for the application of joint inversion techniques. This potential joint inversion of DCR and TDEM methods has been used by several authors to reduce the ambiguities of the models calculated from each method separately. A new approach for joint inversion of these data sets, based on a laterally constrained algorithm, was found. The method was developed for the interpretation of soundings collected along a line over a 1D or 2D geology. The inversion algorithm was tested on two synthetic data sets, as well as on field data from Saudi Arabia. The results show that the algorithm is efficient and stable in producing quasi-2D models from DCR and TDEM data acquired in relatively complex environments.


2020 ◽  
Vol 39 (10) ◽  
pp. 753-754
Author(s):  
Jiajia Sun ◽  
Daniele Colombo ◽  
Yaoguo Li ◽  
Jeffrey Shragge

Geophysicists seek to extract useful and potentially actionable information about the subsurface by interpreting various types of geophysical data together with prior geologic information. It is well recognized that reliable imaging, characterization, and monitoring of subsurface systems require integration of multiple sources of information from a multitude of geoscientific data sets. With increasing data volumes and computational power, new data types, constant development of inversion algorithms, and the advent of the big data era, Geophysics editors see multiphysics integration as an effective means of meeting some of the challenges arising from imaging subsurface systems with higher resolution and reliability as well as exploring geologically more complicated areas. To advance the field of multiphysics integration and to showcase its added value, Geophysics will introduce a new section “Multiphysics and Joint Inversion” in 2021. Submissions are accepted now.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. U9-U22 ◽  
Author(s):  
Jide Nosakare Ogunbo ◽  
Guy Marquis ◽  
Jie Zhang ◽  
Weizhong Wang

Geophysical joint inversion requires the setting of a few parameters for optimum performance of the process. However, there are yet no known detailed procedures for selecting the various parameters for performing the joint inversion. Previous works on the joint inversion of electromagnetic (EM) and seismic data have reported parameter applications for data sets acquired from the same dimensional geometry (either in two dimensions or three dimensions) and few on variant geometry. But none has discussed the parameter selections for the joint inversion of methods from variant geometry (for example, a 2D seismic travel and pseudo-2D frequency-domain EM data). With the advantage of affordable computational cost and the sufficient approximation of a 1D EM model in a horizontally layered sedimentary environment, we are able to set optimum joint inversion parameters to perform structurally constrained joint 2D seismic traveltime and pseudo-2D EM data for hydrocarbon exploration. From the synthetic experiments, even in the presence of noise, we are able to prescribe the rules for optimum parameter setting for the joint inversion, including the choice of initial model and the cross-gradient weighting. We apply these rules on field data to reconstruct a more reliable subsurface velocity model than the one obtained by the traveltime inversions alone. We expect that this approach will be useful for performing joint inversion of the seismic traveltime and frequency-domain EM data for the production of hydrocarbon.


Algorithms ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 144
Author(s):  
Christin Bobe ◽  
Daan Hanssens ◽  
Thomas Hermans ◽  
Ellen Van De Vijver

Often, multiple geophysical measurements are sensitive to the same subsurface parameters. In this case, joint inversions are mostly preferred over two (or more) separate inversions of the geophysical data sets due to the expected reduction of the non-uniqueness in the joint inverse solution. This reduction can be quantified using Bayesian inversions. However, standard Markov chain Monte Carlo (MCMC) approaches are computationally expensive for most geophysical inverse problems. We present the Kalman ensemble generator (KEG) method as an efficient alternative to the standard MCMC inversion approaches. As proof of concept, we provide two synthetic studies of joint inversion of frequency domain electromagnetic (FDEM) and direct current (DC) resistivity data for a parameter model with vertical variation in electrical conductivity. For both studies, joint results show a considerable improvement for the joint framework over the separate inversions. This improvement consists of (1) an uncertainty reduction in the posterior probability density function and (2) an ensemble mean that is closer to the synthetic true electrical conductivities. Finally, we apply the KEG joint inversion to FDEM and DC resistivity field data. Joint field data inversions improve in the same way seen for the synthetic studies.


2013 ◽  
Vol 195 (3) ◽  
pp. 1745-1762 ◽  
Author(s):  
A. Sosa ◽  
A. A. Velasco ◽  
L. Velazquez ◽  
M. Argaez ◽  
R. Romero

Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. R59-R67 ◽  
Author(s):  
Igor B. Morozov ◽  
Jinfeng Ma

The seismic-impedance inversion problem is underconstrained inherently and does not allow the use of rigorous joint inversion. In the absence of a true inverse, a reliable solution free from subjective parameters can be obtained by defining a set of physical constraints that should be satisfied by the resulting images. A method for constructing synthetic logs is proposed that explicitly and accurately satisfies (1) the convolutional equation, (2) time-depth constraints of the seismic data, (3) a background low-frequency model from logs or seismic/geologic interpretation, and (4) spectral amplitudes and geostatistical information from spatially interpolated well logs. The resulting synthetic log sections or volumes are interpretable in standard ways. Unlike broadly used joint-inversion algorithms, the method contains no subjectively selected user parameters, utilizes the log data more completely, and assesses intermediate results. The procedure is simple and tolerant to noise, and it leads to higher-resolution images. Separating the seismic and subseismic frequency bands also simplifies data processing for acoustic-impedance (AI) inversion. For example, zero-phase deconvolution and true-amplitude processing of seismic data are not required and are included automatically in this method. The approach is applicable to 2D and 3D data sets and to multiple pre- and poststack seismic attributes. It has been tested on inversions for AI and true-amplitude reflectivity using 2D synthetic and real-data examples.


2019 ◽  
Vol 220 (3) ◽  
pp. 1995-2008 ◽  
Author(s):  
C Jordi ◽  
J Doetsch ◽  
T Günther ◽  
C Schmelzbach ◽  
H Maurer ◽  
...  

SUMMARY Structural joint inversion of several data sets on an irregular mesh requires appropriate coupling operators. To date, joint inversion algorithms are primarily designed for the use on regular rectilinear grids and impose structural similarity in the direct neighbourhood of a cell only. We introduce a novel scheme for calculating cross-gradient operators based on a correlation model that allows to define the operator size by imposing physical length scales. We demonstrate that the proposed cross-gradient operators are largely decoupled from the discretization of the modelling domain, which is particularly important for irregular meshes where cell sizes vary. Our structural joint inversion algorithm is applied to a synthetic electrical resistivity tomography and ground penetrating radar 3-D cross-well experiment aiming at imaging two anomalous bodies and extracting the parameter distribution of the geostatistical background models. For both tasks, joint inversion produced superior results compared with individual inversions of the two data sets. Finally, we applied structural joint inversion to two field data sets recorded over a karstified limestone area. By including geological a priori information via the correlation-based operators into the joint inversion, we find P-wave velocity and electrical resistivity tomograms that are in accordance with the expected subsurface geology.


2020 ◽  
Vol 110 (6) ◽  
pp. 3037-3049 ◽  
Author(s):  
Seongjun Park ◽  
Inho Baek ◽  
Tae-Kyung Hong

ABSTRACT Earthquake records in the historical literature provide valuable information on the seismic hazard potentials for long recurrence times. The Seoul metropolitan area is the center of the economy and infrastructure in South Korea. Six major earthquakes that occurred around the Seoul metropolitan area during the Joseon dynasty in 1392–1910 are analyzed using a probabilistic joint inversion method based on seismic damage records and earthquake-felt reports. The inversion yields sets of event locations and magnitudes with probabilities. The joint inversion method is validated with synthetic and instrumentally observed data sets. The historical earthquakes are found to be located around the Seoul metropolitan area. The magnitudes of the earthquakes range from ML 5.3 to 6.8 at the peak probabilistic locations. These historical earthquakes suggest considerable seismic hazard potentials in the Seoul metropolitan area.


Sign in / Sign up

Export Citation Format

Share Document