The Application and Value of AVO Analysis for De-risking Hydrocarbon Paleocene Prospects in the UK North Sea

Author(s):  
N. Loizou ◽  
D. Cameron ◽  
S. Chen ◽  
X. Y. Li
Keyword(s):  
Geophysics ◽  
2000 ◽  
Vol 65 (5) ◽  
pp. 1446-1454 ◽  
Author(s):  
Side Jin ◽  
G. Cambois ◽  
C. Vuillermoz

S-wave velocity and density information is crucial for hydrocarbon detection, because they help in the discrimination of pore filling fluids. Unfortunately, these two parameters cannot be accurately resolved from conventional P-wave marine data. Recent developments in ocean‐bottom seismic (OBS) technology make it possible to acquire high quality S-wave data in marine environments. The use of (S)-waves for amplitude variation with offset (AVO) analysis can give better estimates of S-wave velocity and density contrasts. Like P-wave AVO, S-wave AVO is sensitive to various types of noise. We investigate numerically and analytically the sensitivity of AVO inversion to random noise and errors in angles of incidence. Synthetic examples show that random noise and angle errors can strongly bias the parameter estimation. The use of singular value decomposition offers a simple stabilization scheme to solve for the elastic parameters. The AVO inversion is applied to an OBS data set from the North Sea. Special prestack processing techniques are required for the success of S-wave AVO inversion. The derived S-wave velocity and density contrasts help in detecting the fluid contacts and delineating the extent of the reservoir sand.


2020 ◽  
pp. SP494-2019-61
Author(s):  
Stuart G. Archer ◽  
Tom McKie ◽  
Steven D. Andrews ◽  
Anne D. Wilkins ◽  
Matt Hutchison ◽  
...  

AbstractThe Triassic of the Central North Sea is a continental succession that contains prolific hydrocarbon-bearing fluvial sandstone reservoirs stratigraphically partitioned by mudstones. Within the Skagerrak Formation of the UK sector, hydrocarbon accumulations in the Judy, Joanne and Josephine Sandstone members are top sealed by the Julius, Jonathan and Joshua Mudstone members, respectively. However, UK and Norwegian stratigraphic correlations have been problematical for decades, largely due to biostratigraphic challenges but also due to the non-uniqueness of the lithotypes and because the cross-border stratigraphic nomenclature differs and has yet to be rationalized. This study focuses on mudstones rather than sandstones to unify cross-border correlation efforts at a regional scale. The mudstone members have been characterized by integrating sedimentological, petrophysical and geophysical data. The facies are indicative of playa lakes that frequently desiccated and preserved minor anhydrite. These conditions alternated with periods of marshy, palustrine conditions favourable for the formation of dolostones. Regional correlations have detected lateral facies changes in the mudstones which are important for their seismically mappable extents, resulting palaeogeographies and, ultimately, their competency as intraformational top seals. Significant diachroneity is associated with the lithological transitions at sandstone–mudstone member boundaries and although lithostratigraphic surfaces can be used as timelines over short distances (e.g. within a field), they should not be assumed to represent timelines over longer correlation lengths. Palaeoclimatic trends are interpreted and compared to those of adjacent regions to test the extent and impact of climate change as a predictive allogenic forcing factor on sedimentation. Mudstone member deposition occurred as a result of the retreat of large-scale terminal fluvial systems during a return to more arid ‘background’ climatic conditions. The cause of the member-scale climatic cyclicity observed within the Skagerrak Formation may be related to volcanic activity in large igneous provinces which triggered the episodic progradation of fluvial systems.


1991 ◽  
Vol 14 (1) ◽  
pp. 111-116 ◽  
Author(s):  
D. M. Stewart ◽  
A. J. G. Faulkner

AbstractThe Emerald Oil Field lies in Blocks 2/10a, 2/15a and 3/1 lb in the UK sector of the northern North Sea. The field is located on the 'Transitional Shelf, an area on the western flank of the Viking Graben, downfaulted from the East Shetland Platform. The first well was drilled on the structure in 1978. Subsequently, a further seven wells have been drilled to delineate the field.The Emerald Field is an elongate dip and fault closed structure subparallel to the local NW-SE regional structural trend. the 'Emerald Sandstone' forms the main reservoir of the field and comprises a homogeneous transgressive unit of Callovian to Bathonian age, undelain by tilted Precambrian and Devonian Basement Horst blocks. Sealing is provided by siltstones and shales of the overlying Healther and Kimmeridge Clay Formations. The reservoir lies at depths between 5150-5600 ft, and wells drilled to date have encountered pay thicknesses of 42-74 ft. Where the sandstone is hydrocarbon bearing, it has a 100% net/ gross ratio. Porosities average 28% and permeabilities lie in the range 0-1 to 1.3 darcies. Wireline and test data indicate that the field contains a continouous oil column of 200 ft. Three distinct structural culminations exist on and adjacent to the field, which give rise to three separate gas caps, centred around wells 2/10a-4, 2/10a-7 and 2/10a-6 The maximum flow rate achieved from the reservoir to date is 6822 BOPD of 24° API oil with a GOR of 300 SCF/STBBL. In-place hydrocarbons are estimated to be 216 MMBBL of oil and 61 BCF of gas, with an estimated 43 MMBBL of oil recoverable by the initial development plan. initial development drilling began in Spring 1989 and the development scheme will use a floating production system. Production to the facility, via flexible risers, is from seven pre-drilled deviated wells with gas lift. An additional four pre-drilled water injection wells will provide reservoir pressure support.


1991 ◽  
Vol 14 (1) ◽  
pp. 117-126
Author(s):  
J. BREWSTER

AbstractThe Frigg Field was the first giant gas field to be discovered in the northern North Sea. Its position on the boundary line between the UK and Norway called for international cooperation at an early stage in development. The Lower Eocene reservoir sands have extremely good poroperm characteristics but the heterogeneities within the sands control the water influx from the immense Eocene and Palaeocene aquifers below.


2003 ◽  
Vol 20 (1) ◽  
pp. 453-466 ◽  
Author(s):  
C. Gunn ◽  
J. A. MacLeod ◽  
P. Salvador ◽  
J. Tomkinson

AbstractThe MacCulloch Field lies within Block 15/24b in the UK Central North Sea and is located on the northern flank of the Witch Ground Graben. It was discovered by Conoco well 15/24b-3 in 1990.MacCulloch Field is a four-way dip closure at Top Paleocene over a deeper Mesozoic structure. The reservoir consists of Upper Balmoral Sandstones containing 32-37° API oils derived from Kimmeridge Clay Formation shales and sealed by shales belonging to the Sele Formation. The field contains recoverable reserves of 60-90 MMBOE.Reservoir quality is generally very good, with an average porosity of 28% and core permeabilities (Kh) between 200 mD and 2D. AVO anomalies and a seismic flat spot are associated with oil filled reservoir and the oil-water contact in certain areas of the field.


Sign in / Sign up

Export Citation Format

Share Document