The Frigg Field, Block 10/1 UK North Sea and 25/1, Norwegian North Sea

1991 ◽  
Vol 14 (1) ◽  
pp. 117-126
Author(s):  
J. BREWSTER

AbstractThe Frigg Field was the first giant gas field to be discovered in the northern North Sea. Its position on the boundary line between the UK and Norway called for international cooperation at an early stage in development. The Lower Eocene reservoir sands have extremely good poroperm characteristics but the heterogeneities within the sands control the water influx from the immense Eocene and Palaeocene aquifers below.

2016 ◽  
Vol 8 (1) ◽  
pp. 187-197 ◽  
Author(s):  
Iain C. Scotchman ◽  
Anthony G. Doré ◽  
Anthony M. Spencer

AbstractThe exploratory drilling of 200 wildcat wells along the NE Atlantic margin has yielded 30 finds with total discovered resources of c. 4.1×109 barrels of oil equivalent (BOE). Exploration has been highly concentrated in specific regions. Only 32 of 144 quadrants have been drilled, with only one prolific province discovered – the Faroe–Shetland Basin, where 23 finds have resources totalling c. 3.7×109 BOE. Along the margin, the pattern of discoveries can best be assessed in terms of petroleum systems. The Faroe–Shetland finds belong to an Upper Jurassic petroleum system. On the east flank of the Rockall Basin, the Benbecula gas and the Dooish condensate/gas discoveries have proven the existence of a petroleum system of unknown source – probably Upper Jurassic. The Corrib gas field in the Slyne Basin is evidence of a Carboniferous petroleum system. The three finds in the northern Porcupine Basin are from Upper Jurassic source rocks; in the south, the Dunquin well (44/23-1) suggests the presence of a petroleum system there, but of unknown source. This pattern of petroleum systems can be explained by considering the distribution of Jurassic source rocks related to the break-up of Pangaea and marine inundations of the resulting basins. The prolific synrift marine Upper Jurassic source rock (of the Northern North Sea) was not developed throughout the pre-Atlantic Ocean break-up basin system west of Britain and Ireland. Instead, lacustrine–fluvio-deltaic–marginal marine shales of predominantly Late Jurassic age are the main source rocks and have generated oils throughout the region. The structural position, in particular relating to the subsequent Early Cretaceous hyperextension adjacent to the continental margin, is critical in determining where this Upper Jurassic petroleum system will be most effective.


1991 ◽  
Vol 14 (1) ◽  
pp. 111-116 ◽  
Author(s):  
D. M. Stewart ◽  
A. J. G. Faulkner

AbstractThe Emerald Oil Field lies in Blocks 2/10a, 2/15a and 3/1 lb in the UK sector of the northern North Sea. The field is located on the 'Transitional Shelf, an area on the western flank of the Viking Graben, downfaulted from the East Shetland Platform. The first well was drilled on the structure in 1978. Subsequently, a further seven wells have been drilled to delineate the field.The Emerald Field is an elongate dip and fault closed structure subparallel to the local NW-SE regional structural trend. the 'Emerald Sandstone' forms the main reservoir of the field and comprises a homogeneous transgressive unit of Callovian to Bathonian age, undelain by tilted Precambrian and Devonian Basement Horst blocks. Sealing is provided by siltstones and shales of the overlying Healther and Kimmeridge Clay Formations. The reservoir lies at depths between 5150-5600 ft, and wells drilled to date have encountered pay thicknesses of 42-74 ft. Where the sandstone is hydrocarbon bearing, it has a 100% net/ gross ratio. Porosities average 28% and permeabilities lie in the range 0-1 to 1.3 darcies. Wireline and test data indicate that the field contains a continouous oil column of 200 ft. Three distinct structural culminations exist on and adjacent to the field, which give rise to three separate gas caps, centred around wells 2/10a-4, 2/10a-7 and 2/10a-6 The maximum flow rate achieved from the reservoir to date is 6822 BOPD of 24° API oil with a GOR of 300 SCF/STBBL. In-place hydrocarbons are estimated to be 216 MMBBL of oil and 61 BCF of gas, with an estimated 43 MMBBL of oil recoverable by the initial development plan. initial development drilling began in Spring 1989 and the development scheme will use a floating production system. Production to the facility, via flexible risers, is from seven pre-drilled deviated wells with gas lift. An additional four pre-drilled water injection wells will provide reservoir pressure support.


2003 ◽  
Vol 20 (1) ◽  
pp. 761-770 ◽  
Author(s):  
A. P. Hillier

AbstractDiscovered in 1966 and starting production in 1968, Leman was the second gas field to come into production in the UK sector of the North Sea and is still producing gas today. It is classified as a giant field with an estimated initial gas-in-place of 397 BCM of gas in the aeolian dune sands of the Rotliegend Group. The field extends over five blocks and is being developed by two licence groups with Shell and Amoco (now BP Amoco) being the operators


1991 ◽  
Vol 14 (1) ◽  
pp. 183-189 ◽  
Author(s):  
John W. Erickson ◽  
C. D. Van Panhuys

AbstractThe Osprey Oilfield is located 180 km northeast of the Shetland Islands in Blocks 211/23a and 211/18a in the UK sector of the northern North Sea. The discovery well 211/23-3 was drilled in January 1974 in a water depth of 530 ft. The trap is defined at around 8500 ft TVSS by two dip and fault closed structures, the main 'Horst Block' and the satellite 'Western Pool'. The hydrocarbons are contained in reservoir sandstones belonging to the Middle Jurassic Brent Group which was deposited by a wave-dominated delta system in the East Shetlands Basin. The expected STOIIP and ultimate recovery are estimated at 158 MMBBL and 60 MMBBL of oil respectively, which represents a recovery factor of 38%. The 'Horst Block' contains 85% of the reserves with an OOWC about 150 ft shallower than in the 'Western Pool'. Reservoir quality is excellent, with average porosities varying from 23-26% and average permeabilities varying from 35-5300 md. The development plan envisages eleven satellite wells, six producers and five water injectors, closely clustered around two subsea manifolds. First production is expected in late 1990/early 1991. The wet crude oil will be piped to the Dunlin 'A' platform for processing and from there to the Cormorant Alpha platform into the Brent System pipeline for export to the Sullom Voe terminal.


Author(s):  
Maisie Bache-Jeffreys ◽  
Bárbara Lins Caldas de Moraes ◽  
Rachel E. Ball ◽  
Gui Menezes ◽  
Jónbjörn Pálsson ◽  
...  

AbstractBatoid fishes are among the most endangered marine vertebrates, yet conservation efforts have been confounded by incomplete taxonomy. Evidence suggest that the critically endangered ‘common skate’ actually represents two species: the flapper skate (Dipturus intermedius) and the blue skate (Dipturus batis). However, knowledge of the geographic range of these two nominal species is limited. Here, DNA sequencing is used to distinguish these species, allowing their spatial distributions to be clarified. These records were also used as the basis for species distribution modelling, providing the first broad scale models for each species across the Northeast Atlantic. Samples were obtained from Iceland, the UK (specifically Shetland), the North Sea and the Azores. Results suggest that D. batis was commonly distributed in the Western Approaches and Celtic Sea, extending out to Rockall and Iceland. D. intermedius generally appears to be less abundant, but was most frequent around northern Scotland and Ireland, including the northern North Sea, and was also present in Portugal. Two individuals were also identified from seamounts in remote areas of the Atlantic around the Azores, the furthest south and west the species has been found. This supports reports that the flapper skate historically had a much wider distribution (which was also highlighted in the distribution model), emphasising the large scale over which fisheries may have led to extirpations. Furthermore, these Azorean samples shared a unique control region haplotype, highlighting the importance of seamounts in preserving genetic diversity.


2003 ◽  
Vol 20 (1) ◽  
pp. 723-730 ◽  
Author(s):  
M. Lappin ◽  
D. J. Hendry ◽  
I. A. Saikia

AbstractThe Guinevere Gas Field was discovered in January 1988 by the Mobil-operated well 48/17b-5. The field lies in the UK Sector of the Southern North Sea and occupies Block 48/17b. The field is located within the footwall of the Dowsing Fault Zone on the western flank of the Sole Pit Basin. Guinevere is a compressional northwesterly-trending fault block that comprises Early Permian Leman Sandstone Formation (Rotliegend Group) reservoir, sourced from the Carboniferous below and sealed by Later Permian Zechstein evaporates above.The Guinevere Gas Field is estimated to contain 90 BCF of recoverable gas reserves and was brought on-stream in June 1993 using a single not-normally-manned minimum facilities platform. Field life is predicted to be 13 years. Gas and condensate are evacuated though the Lancelot Area Production System (LAPS) to the onshore Bacton gas terminal in East Anglia.


1991 ◽  
Vol 14 (1) ◽  
pp. 191-198 ◽  
Author(s):  
M. Van Panhuys-Sigler Van ◽  
A. Baumann ◽  
T. C. Holland

AbstractThe Tern Oilfield is situated 150 km northeast of the Shetland Islands in Block 210/25a in the UK sector of the northern North Sea. The discovery well 210/25-1 was drilled in 1975 in a water depth of about 541 ft. The trap is defined at around 8000 ft TVSS by a tilted horst-structure. The hydrocarbons are contained in reservoirs belonging to the Middle Jurassic Brent Group sands deposited by a wave-dominated delta system in the East Shetland Basin. Complex faulting of the structure is responsible for the division of the field into two areas with different original oil-water contacts: the Main Area of the field with an oil-water contact at 8260 ft TVSS, and the Northern Area with a possible oil-water contact at 8064 ft TVSS. Reservoir quality is good with average porosities ranging from 20-24% and an average permeability of 350 md. The expected STOIIP and ultimate recovery of oil are 452 and 175 MMBBL, respectively which represents a recovery factor of 39%.The initial stage of the development plan calls for ten wells, five oil producers and five water injectors, to be drilled from a single platform, Tern Alpha. Development drilling started in February 1989 and first oil was produced on 2 June 1989. The oil is evacuated via the North Cormorant and Cormorant Alpha platforms into the Brent System pipeline for export to the Sullom Voe terminal.To date, two producers have b een drilled and total cumulative production is 6.4 MMBBL (1 January 1990). Ultimate recovery is estimated to be some 175 MMBBL.


1991 ◽  
Vol 14 (1) ◽  
pp. 451-458 ◽  
Author(s):  
A. P. Hillier ◽  
B. P. J. Williams

AbstractDiscovered in 1966 and starting production in 1968, Leman was the second gas field to come into production in the UK sector of the North Sea. It is classified as a giant field with an estimated ultimate recovery of 11 500 BCF of gas in the aeolian dune sands of the Rotliegend Group. The field extends over five blocks and is being developed by two groups with Shell and Amoco being the operators. Despite being such an old field development drilling is still ongoing in the field with the less permeable northwest area currently being developed.


2003 ◽  
Vol 20 (1) ◽  
pp. 741-747 ◽  
Author(s):  
C. W. McCrone ◽  
M. Gainski ◽  
P. J. Lumsden

abstractIndefatigable is a mature dry gas field on the northeastern margin of the UK Southern North Sea Rotliegend Play fairway. The field was discovered, 49/18-1, by the Amoco operated group in 1966 and subsequent appraisal drilling established that the field extended over four blocks (i.e. 49/18, 49/19, 49/23 & 49/24). There have been several phases of development, initial production concentrated on the main horst block with first gas in 1971, followed by the west flank area in 1977/78. Then in 1987/88 the SW and SE Indefatigable satellite accumulations were brought on-stream.The Rotliegend Leman Sandstone Formation reservoir primarily consists of stacked aeolian dune sandstones (150-400 ft) of good reservoir quality (porosity 15%, permeability 100-1000 mD). However, the integration of the 1992/93 3D seismic survey, well data, reservoir pressure and production data has lead to a much more complex view of the field with 11 gas-water contacts and 15 reservoir compartments.This has resulted in an upward revision of the gas initially-in-place from 5.2 to 5.6 TCF and recoverable reserves from 4.4 to 4.7 TCF. Current work is focused on maximizing recovery from the various reservoir compartments and accessing this additional potential.


Sign in / Sign up

Export Citation Format

Share Document