Fracture Aperture Prediction Method based on Hierarchical Expert Committee Machine in Tight Clastic Reservoir

Author(s):  
Y. Zhou ◽  
G. Zhang ◽  
S. Zhang ◽  
W. Cui ◽  
J. Xv
1987 ◽  
Vol 58 (04) ◽  
pp. 1085-1087 ◽  
Author(s):  
P J Gaffney ◽  
A D Curtis

SummaryAn international collaborative study involving ten laboratories located in eight different countries was undertaken in order to replace the current International Standard (I.S.) for tissue plasminogen activator (t-PA). Two lyophilised candidate preparations of high purity were assessed in comparison with the current I.S. for t-PA using only a clot lysis assay. One preparation (coded 861670) was purified from a cultured melanoma cell supernatant and was about 98% single chain t-PA while the other preparation (coded 861624) was derived from Chinese hamster ovary (CHO) cells following DNA recombinant procedures and was 75% single chain t-PA.Both candidate preparations of t-PA compared in quite a satisfactory manner with the current I.S. from the viewpoint of the biometrics of parallel line bioassays and both preparations were quite stable for long periods at low temperatures and stable from up to 1 month at temperatures of 20° and 38° C. Both fultil the criteria to serve as a satisfactory Znd International Standard for t-PA. The Fibrinolysis Subcommittee of the International Committee for Thrombosis and Haemostasis recommended the melanoma source t-PA (861670) as the next I.S. in order to maintain continuity with the 1st I.S. which was also a melanomatype preparation. The data from the ten laboratories indicated that each ampoule of the new proposed standard contains 850 international units of t-PA activity by the clot lysis assay. It is planned to present the results of this study to the Expert Committee on Biological Standardization of the World Health Organization at its next meeting and to request that the preparation of t-PA, coded 861670, be established as the 2ndlnternational Standard for t-PA.


1992 ◽  
Vol 67 (04) ◽  
pp. 424-427 ◽  
Author(s):  
P J Gaffney ◽  
A B Heath ◽  
J W Fenton II

SummarySince 1975 an International Standard for Thrombin of low purity has been used. While this standard was stable and of value for calibrating thrombins of unknown potency the need for a pure a-thrombin standard arose both for accurate calibration and for precise measurement of thrombin inhibitors, notably hirudin. An international collaborative study was undertaken to establish the potency and stability of an ampouled pure a-thrombin preparation. A potency of 97.5 international units (95% confidence limits 86.5-98.5) was established for the new a-thrombin standard (89/ 588) using a clotting-assay procedure. Stability data at various elevated temperatures indicated that the standard could be transported and stored with no significant loss of potency.Ampoules of lyophilised a-thrombin (coded 89/588) have been recommended as an International Standard for a-thrombin with an assigned potency of 100 international units per ampoule by the International Society for Thrombosis and Haemostasis (Thrombin and its Inhibitors Sub-Committee) in Barcelona, Spain in July 1990 while the Expert Committee on Biological Standardisation and Control of the World Health Organisation will consider its status at its next meeting in Geneva in 1991.


1985 ◽  
Vol 53 (01) ◽  
pp. 134-136 ◽  
Author(s):  
P J Gaffney ◽  
A D Curtis

SummaryAn international collaborative study involving seven laboratories was undertaken to assess which of three lyophilised preparations might serve as an International Standard (I.S.) for tissue plasminogen activator (t-PA). Two of the preparations were isolates from human melanoma cell cultures while one was of pig heart origin. A clot lysis assay was used by all participants in the study.The data suggested that both preparations of human cell origin were comparable, in that their log dose-response lines were parallel, while that of the porcine preparation was not. Accelerated degradation studies indicated that one melanoma extract (denoted 83/517) was more stable than the other and it was decided to recommend preparation 83/517 as the standard for t-PA. The International Committee for Thrombosis and Haemostasis (Stockholm 1983) has recommended the use of this material as a standard and it has been established by the Expert Committee on Biological Standardization of the World Health Organization as the International, Standard for tissue plasminogen activator, with an assigned potency of 1000 International Units per ampoule.


2018 ◽  
pp. 214-223
Author(s):  
AM Faria ◽  
MM Pimenta ◽  
JY Saab Jr. ◽  
S Rodriguez

Wind energy expansion is worldwide followed by various limitations, i.e. land availability, the NIMBY (not in my backyard) attitude, interference on birds migration routes and so on. This undeniable expansion is pushing wind farms near populated areas throughout the years, where noise regulation is more stringent. That demands solutions for the wind turbine (WT) industry, in order to produce quieter WT units. Focusing in the subject of airfoil noise prediction, it can help the assessment and design of quieter wind turbine blades. Considering the airfoil noise as a composition of many sound sources, and in light of the fact that the main noise production mechanisms are the airfoil self-noise and the turbulent inflow (TI) noise, this work is concentrated on the latter. TI noise is classified as an interaction noise, produced by the turbulent inflow, incident on the airfoil leading edge (LE). Theoretical and semi-empirical methods for the TI noise prediction are already available, based on Amiet’s broadband noise theory. Analysis of many TI noise prediction methods is provided by this work in the literature review, as well as the turbulence energy spectrum modeling. This is then followed by comparison of the most reliable TI noise methodologies, qualitatively and quantitatively, with the error estimation, compared to the Ffowcs Williams-Hawkings solution for computational aeroacoustics. Basis for integration of airfoil inflow noise prediction into a wind turbine noise prediction code is the final goal of this work.


2018 ◽  
Vol 138 (9) ◽  
pp. 1075-1081
Author(s):  
Yasuhide Kobayashi ◽  
Mitsuyuki Saito ◽  
Yuki Amimoto ◽  
Wataru Wakita

Sign in / Sign up

Export Citation Format

Share Document