On the cosmic background radiation and the age of the Universe

2013 ◽  
Vol 26 (3) ◽  
pp. 358-361
Author(s):  
Leandro Meléndez Lugo

A basic fundamental analysis indicates that any radiation emitted by remote objects, such as galaxies and quasars, has only a limited age in comparison with that of the Universe. The radiation emitted by such objects thousands of millions of years ago is the oldest one that can be detected. Any previous radiation emitted by these bodies during their dispersion process resulting from the Universe expansion cannot be detected. It is shown on the basis of this analysis that the age of the Universe is much greater than that established as 13,700 millions of years and that the cosmic microwave background radiation must have a source other than the Big Bang.

1974 ◽  
Vol 63 ◽  
pp. 157-162 ◽  
Author(s):  
R. B. Partridge

It is now generally accepted that the microwave background radiation, discovered in 1965 (Penzias and Wilson, 1965; Dicke et al., 1965), is cosmological in origin. Measurements of the spectrum of the radiation, discussed earlier in this volume by Blair, are consistent with the idea that the radiation is in fact a relic of a hot, dense, initial state of the Universe – the Big Bang. If the radiation is cosmological, measurements of both its spectrum and its angular distribution are capable of providing important – and remarkably precise – cosmological data.


1993 ◽  
Vol 02 (01) ◽  
pp. 97-104 ◽  
Author(s):  
V.G. GURZADYAN ◽  
A.A. KOCHARYAN

The anisotropy properties of the Cosmic Microwave Background Radiation (CMB) are considered within the framework of the photon beam mixing effect developed earlier. The existence of an observable characteristic of the CMB is shown, namely the geometrical shape of anisotropy spots and their degree of complexity, which can contain unique information on cosmological parameters and the life history of the Universe. If future experiments (COBE and others) indicate such features of anisotropy maps, then one can have serious evidence for the negative curvature of the Universe.


Author(s):  
John L. Culliney ◽  
David Jones

Since the Big Bang, the universe’s inflation and its aftermath might be called the “creation story” according to science, in which tremendously variegated order and deterministic pattern propagated from a cosmic seed of perfect uniformity and smoothness. The formative properties of matter and energy were forged through initial quantum turbulence and an emergent principle of attraction that seems to pervade all of nature. As it emerged out of simplicity, the universe adopted a modus operandi that we call the cooperative constant, initially manifested in physical forces, especially gravity, and progressively complemented by chemistry. From an evolutionary point of view, an emergent catalytic potential, an attraction to cooperate, or participate in heterogeneity—which becomes a sine qua non for the existence of life—is widely characteristic of matter in our universe. This tendency is now found at the heart of the most progressive systems of which we are aware. Chapter One weaves its cosmological story through leading theories and revelations in astrophysics including primordial quantum turbulence, the multiverse, recombination, and the origin of the cosmic microwave background radiation (CMB), also the enigmas of dark matter and dark energy, and nuclear synthesis of the elements of life within stars.


2011 ◽  
Vol 2 ◽  
pp. 67-70
Author(s):  
Krishna Raj Adhikari

School of thought is the theory of creation (theism) and school of thought deals with the random chance of evolution (atheism) about the origin of the universe and origin of the life. In the race of proof of the hypothesis, the theism has no scientific evidence and reliable proof, on the other hand atheism based on the scientific observable evidence. The latest theory of origin of the universe by Big Bang is more believable and supported by some scientific evidence such as Doppler effect on light, Hubble observation and result of the expanding the universe and observation of the cosmic microwave background radiation(CMBR). Paper briefly discussing about the origin of the universe and the Bing Bang.Key words: Big bang; Doppler; Cosmic microwave background radiation(CMBR)The Himalayan Physics Department of Physics, PN Campus, Pokhara Nepal Physical Society, Western Regional ChapterVol.2, No.2, May, 2011Page: 67-70Uploaded Date: 1 August, 2011


1994 ◽  
Vol 2 (2) ◽  
pp. 155-164
Author(s):  
Martin J. Rees

During the last 25 years, evidence has accumulated that our universe has evolved, over a period of 10–15 billion years, from a hot dense fireball to its present state. Telescopes can detect objects so far away that the universe had only a tenth its present age when the light we now receive set out towards us. The cosmic background radiation, and the abundances of elements such as helium and lithium, permit quantitative inferences about what the universe was like when it had been expanding for only a few seconds. The laws of physics established in the laboratory apparently suffice for interpreting all astronomical phenomena back to that time. In the initial instants of cosmic expansion, however, the particle energies and densities were so extreme that terrestrial experiments offer no firm guidance. We will not understand why the universe contains the observed ‘mix’ of matter and radiation, nor why it is expanding in the observed fashion, without further progress in fundamental physics.


1986 ◽  
Vol 7 ◽  
pp. 307-319
Author(s):  
R. B. Partridge

AbstractCrucial cosmological information is provided by the observed angular distribution (isotropy) of the cosmic microwave background radiation. This report treats the current status of searches for anisotroples in this radiation on all angular scales from 180° (the dipole component) to 6″. With the exception of the dipole component, only upper limits (at ~ 10-4 in ΔT/T) are available, yet these upper limits have played an important role in refining models of the early Universe and of the origin of structure within it.


1983 ◽  
Vol 104 ◽  
pp. 125-126
Author(s):  
K. I. Kellermann ◽  
E. B. Fomalont ◽  
J. V. Wall

The VLA has been used at 4.9 GHz to observe a small region of sky in order to extend the radio source count to low flux density (Fomalont et al., these proceedings) and to look for small scale fluctuations in the 2.7 K cosmic microwave background radiation.


2009 ◽  
Vol 5 (S260) ◽  
pp. 666-669
Author(s):  
Alejandro Gangui

AbstractCommon wisdom says that cosmologists are smart: they have developed a theory that can explain the “origin of the universe”. Every time an astro-related, heavily funded “big-science” project comes to the media, naturally the question arises: will science –through this or that experiment– explain the origin of the cosmos? Can this be done with the LHC, for example? Will this dream machine create other universes? Of course, the very words we employ in cosmology reinforce this misconception: so Big Bang must be associated with an “explosion”, even if a “peculiar” one, as it took place nowhere (there was presumably no space before the beginning) and happened virtually in no time (supposedly, space-time was created on this peculiar –singular– event). Right, the issue sounds confusing. Let us imagine what kids may get out of all this.We have recently presented a series of brief astronomy and cosmology books aimed at helping both kids and their teachers in these and other arcane subjects, all introduced with carefully chosen words and images that young children can understand. In particular, Volume Four deals with the Big Bang and emphasizes the notion of “evolution” as opposed to the –wrong– notion of “origin” behind the scientific model. We then explain some of the pillars of Big Bang cosmology: the expansion of space that drags away distant galaxies, as seen in the redshift of their emitted light; the build-up of light elements in a cooling bath of radiation, as explained by primordial nucleosynthesis; and the existence and main features of the ubiquitous cosmic microwave background radiation, where theory and observations agree to a highly satisfactory degree.Of course, one cannot attempt to answer the “origins” question when it is well known that all theories so far break down close to this origin (if there was actually an origin). It is through observations, analyses, lively discussions and recognition of the basic limitations of current theories and ideas, that we are led to try and reconstruct the past and predict the future evolution of our universe. Just that. Sound science turns out to be much more attractive when we tell the truth of what we really know.


1992 ◽  
Vol 9 ◽  
pp. 287-289
Author(s):  
Jayant V. Narlikar

Why do we need to think about any alternatives when the primordial interpretation of the microwave background radiation (MBR) has been accepted by so many for so long? The answer is that the primordial interpretation, in spite of its successes has manifest shortcomings in spite of attempts to remove them by so many for so long. To mention a few: a)Why is the MBR temperature 2.7 K? The value is taken as a parameter in all early universe calculations; it is not predicted by the hot big bang theory with or without inflation.b)There are other astrophysical processes of comparable energy density and other radiation backgrounds that have no primordial origin; why should MBR alone stand out as the odd one out just at this epoch?c)Why are there no signatures of structure formation on the MBR; why is it so smooth?d)The hot big bang model relates to the universe in the first three minutes while the MBR is observed in the more recent past; are we not making too long a jump across from the one to the other?


1983 ◽  
Vol 104 ◽  
pp. 483-484
Author(s):  
Kenneth Brecher

The “standard” hot big bang model accounts for the expansion of the Universe, the existence of the microwave background radiation, and the mass fraction of the light elements up to 4He. It does not account for the high degree of isotropy and homogeneity of the Universe in the large, nor of the existence of structure (galaxies, clusters) on smaller scales. Other problems, such as the lepton to baryon ratio, the preponderance of matter over antimatter, and the “coincidences” of dimensionless ratios of several fundamental physical and cosmological “constants” also lie outside of the “standard” model at present.


Sign in / Sign up

Export Citation Format

Share Document