scholarly journals Relation between Metallic Corrosion and Corrosive Environments

1981 ◽  
Vol 54 (5) ◽  
pp. 309-319
Author(s):  
Toshihei MISAWA
2021 ◽  
Author(s):  
Brahim El Ibrahimi ◽  
Lei Guo ◽  
Jéssica Verger Nardeli ◽  
Rachid Oukhrib

Biopolymers-based compounds were used by different manners for metal protection toward corrosion phenomena, namely via inhibiting additive and coating strategies. In the last decade, the application of these compounds or their chemically modified forms as effective replacements for toxic inorganic and organic inhibitors attracts more attention. Additionally to their intrinsic chemical stability, biodegradability, eco-friendly, low cost and renewability, biopolymers set were shown the remarkable effect to control the dissolution of several metallic materials in various corrosive environments. Among a large variety of available biopolymers, chitosan and its functionalized form, as well as its nanoparticle composites, have been reported and widely used as good anti-corrosion compounds for different metal/medium systems. In this context, the current chapter aims to shed more light on this subject.


Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


Alloy Digest ◽  
1979 ◽  
Vol 28 (1) ◽  

Abstract ALLEGHENY LUDLUM E-BRITE 26-1 ALLOY is a low-carbon, low-nitrogen ferritic stainless steel made by a vacuum refining process. It provides: (1) Excellent resistance to pitting and crevice corrosion in chloride-containing environments, (2) Excellent resistance to chloride stress-corrosion cracking, (3) Resistance to intergranular corrosion, (4) Resistance to a wide variety of corrosive environments, and (5) Improved toughness and ductility after welding. Its applications include equipment for handling caustic, organic acids, nitric acid, bleach solutions, urea and chloride containing cooling waters. This datasheet provides information on composition, physical properties, microstructure, hardness, and tensile properties as well as fracture toughness. It also includes information on low temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-360. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1974 ◽  
Vol 23 (2) ◽  

Abstract ALLEGHENY STAINLESS TYPE 434 is a low-carbon ferritic stainless steel with good corrosion resistance to mildly corrosive environments and the atmosphere. It is oxidation resistant at temperatures up to 1600 F for intermittent service and up to 1450-1500 F for continuous service. It is used for automotive trim and other exterior environments. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-292. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
2020 ◽  
Vol 69 (12) ◽  

Abstract Outokumpu Moda 410L/4003 is a weldable, extra low carbon, Cr-Ni, ferritic stainless steel that is best suited for mildly corrosive environments such as indoors, where the material is either not exposed to contact with water or gets regularly wiped dry, or outdoors, where some discoloration and superficial rusting are acceptable. It is a low-cost alternative to low-carbon non-alloy steels in certain applications. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1330. Producer or source: Outokumpu Oyj.


Alloy Digest ◽  
2020 ◽  
Vol 69 (11) ◽  

Abstract Outokumpu Moda 410S/4000 is a 13% Cr, ferritic stainless steel that is used in applications requiring good resistance to mildly corrosive environments. It is a low carbon, non-hardening modification of Type 410 stainless steel. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on low and high temperature performance, corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1329. Producer or source: Outokumpu Oyj.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 536
Author(s):  
Mosab Kaseem ◽  
Karna Ramachandraiah ◽  
Shakhawat Hossain ◽  
Burak Dikici

This review presents an overview of the recent developments in the synthesis of layered double hydroxide (LDH) on the anodized films of Mg alloys prepared by either conventional anodizing or plasma electrolytic oxidation (PEO) and the applications of the formed composite ceramics as smart chloride traps in corrosive environments. In this work, the main fabrication approaches including co-precipitation, in situ hydrothermal, and an anion exchange reaction are outlined. The unique structure of LDH nanocontainers enables them to intercalate several corrosion inhibitors and release them when required under the action of corrosion-relevant triggers. The influences of different variables, such as type of cations, the concentration of salts, pH, and temperature, immersion time during the formation of LDH/anodic film composites, on the electrochemical response are also highlighted. The correlation between the dissolution rate of PEO coating and the growth rate of the LDH film was discussed. The challenges and future development strategies of LDH/anodic films are also highlighted in terms of industrial applications of these materials.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 241
Author(s):  
Xiaozhen Li ◽  
Hui Wang ◽  
Jianmin Wang ◽  
Junzhe Liu

In this work, the microstructure characteristics of corrosion products of reinforcement under a corrosive environment with chloride, carbonation and the combination of chloride-carbonization were studied by x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy/energy spectroscopy (SEM-EDX). The results indicate that the outside of the passivation film reacts with the cement slurry to produce Fe–SiO4 in all three corrosive environments. The inner side is not completely corroded. The morphology of the corrosion is different in the three environments. In a chloride environment, corrosion products have obvious cracks, and the local layered structure is dense. In a carbonation environment, the surface of the steel corrosion shows a uniform granular structure and loose texture. With the combination of chloride and combination, the surface of the structural layer of steel corrosion was uneven and accompanied by protrusions, cracking and spalling occurred. The composition of the corrosion substances in the three corrosion environments are mainly composed of FeO, Fe3O4, Fe2O3 and Fe–SiO4. The content of iron oxide increases from a chloride salt, carbonization to the composite environment, indicating that the corrosion degree intensifies successively.


Sign in / Sign up

Export Citation Format

Share Document