Computer Simulations of Solar Energy Systems

Author(s):  
Akram Gasmelseed

In recent years, computer simulation has become a standard tool for analyzing solar energy systems. The interaction of light with nanoscale matter can provide greater functionality for photonic devices and render unique information about their structural and dynamical properties. As the field of nanophotonics continues to experience phenomenal growth at both the fundamental research and applications level, computational modeling is essential both for interpreting experiments and for suggesting new directions – for example, in designing of thin-film photovoltaic cells. The demand for computer simulation continues to increase as researchers and developers tackle the tough challenges of designing new generation devices and optimizing current generation devices. This chapter is devoted to the development and application of the Finite-Difference Time-Domain (FDTD) method to solar energy systems. In addition, new models covering the latest advances in nanophotonics technologies, as well as key improvements to the numeric solvers and new usability features, are introduced in this chapter.

2014 ◽  
pp. 712-730
Author(s):  
Akram Gasmelseed

In recent years, computer simulation has become a standard tool for analyzing solar energy systems. The interaction of light with nanoscale matter can provide greater functionality for photonic devices and render unique information about their structural and dynamical properties. As the field of nanophotonics continues to experience phenomenal growth at both the fundamental research and applications level, computational modeling is essential both for interpreting experiments and for suggesting new directions – for example, in designing of thin-film photovoltaic cells. The demand for computer simulation continues to increase as researchers and developers tackle the tough challenges of designing new generation devices and optimizing current generation devices. This chapter is devoted to the development and application of the Finite-Difference Time-Domain (FDTD) method to solar energy systems. In addition, new models covering the latest advances in nanophotonics technologies, as well as key improvements to the numeric solvers and new usability features, are introduced in this chapter.


Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 187
Author(s):  
Tianshun Li ◽  
Renxian Gao ◽  
Xiaolong Zhang ◽  
Yongjun Zhang

Changing the morphology of noble metal nanoparticles and polarization dependence of nanoparticles with different morphologies is an important part of further research on surface plasma enhancement. Therefore, we used the method based on Matlab simulation to provide a simple and effective method for preparing the morphologies of Au nanoparticles with different morphologies, and prepared the structure of Au nanoparticles with good uniformity and different morphologies by oblique angle deposition (OAD) technology. The change of the surface morphology of nanoparticles from spherical to square to diamond can be effectively controlled by changing the deposition angle. The finite difference time domain (FDTD) method was used to simulate the electromagnetic fields of Au nanoparticles with different morphologies to explore the polarization dependence of nanoparticles with different shapes, which was in good agreement with Raman spectrum.


Sign in / Sign up

Export Citation Format

Share Document