Hybrid Metaheuristics Algorithms for Inventory Management Problems

Author(s):  
Ata Allah Taleizadeh ◽  
Leopoldo Eduardo Cárdenas-Barrón

The hybrid metaheuristics algorithms (HMHAs) have gained a considerable attention for their capability to solve difficult problems in different fields of science. This chapter introduces some applications of HMHAs in solving inventory theory problems. Three basic inventory problems, joint replenishment EOQ problem, newsboy problem, and stochastic review problem, in certain and uncertain environments such as stochastic, rough, and fuzzy environments with six different applications, are considered. Several HMHAs such as genetic algorithm (GA), simulated annealing (SA), particle swarm optimization (PSO), harmony search (HS), variable neighborhood search (VNS), and bees colony optimization (BCO) methods are used to solve the inventory problems. The proposed metaheuristics algorithms also are combined with fuzzy simulation, rough simulation, Pareto selecting and goal programming approaches. The computational performance of all of them, on solving these three optimization problems, is compared together.

Author(s):  
Ali Kaveh ◽  
S.R. Hoseini Vaez ◽  
Pedram Hosseini

In this study, the Modified Dolphin Monitoring (MDM) operator is used to enhance the performance of some metaheuristic algorithms. The MDM is a recently presented operator that controls the population dispersion in each iteration. Algorithms are selected from some well-established algorithms. Here, this operator is applied on Differential Evolution (DE), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Vibrating Particles System (VPS), Enhanced Vibrating Particles System (EVPS), Colliding Bodied Optimization (CBO) and Harmony Search (HS) and the performance of these algorithms are evaluated with and without this operator on three well-known structural optimization problems. The results show the performance of this operator on these algorithms for the best, the worst, average and average weight of the first quarter of answers.


2014 ◽  
Vol 1044-1045 ◽  
pp. 1418-1423
Author(s):  
Pasura Aungkulanon

Machining optimization problem aims to optimize machinery conditions which are important for economic settings. The effective methods for solving these problems using a finite sequence of instructions can be categorized into two groups; exact optimization algorithm and meta-heuristic algorithms. A well-known meta-heuristic approach called Harmony Search Algorithm was used to compare with Particle Swarm Optimization. We implemented and analysed algorithms using unconstrained problems under different conditions included single, multi-peak, curved ridge optimization, and machinery optimization problem. The computational outputs demonstrated the proposed Particle Swarm Optimization resulted in the better outcomes in term of mean and variance of process yields.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jingzheng Yao ◽  
Duanfeng Han

Barebones particle swarm optimization (BPSO) is a new PSO variant, which has shown a good performance on many optimization problems. However, similar to the standard PSO, BPSO also suffers from premature convergence when solving complex optimization problems. In order to improve the performance of BPSO, this paper proposes a new BPSO variant called BPSO with neighborhood search (NSBPSO) to achieve a tradeoff between exploration and exploitation during the search process. Experiments are conducted on twelve benchmark functions and a real-world problem of ship design. Simulation results demonstrate that our approach outperforms the standard PSO, BPSO, and six other improved PSO algorithms.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 862 ◽  
Author(s):  
José García ◽  
José V. Martí ◽  
Víctor Yepes

The design of reinforced earth retaining walls is a combinatorial optimization problem of interest due to practical applications regarding the cost savings involved in the design and the optimization in the amount of CO 2 emissions generated in its construction. On the other hand, this problem presents important challenges in computational complexity since it involves 32 design variables; therefore we have in the order of 10 20 possible combinations. In this article, we propose a hybrid algorithm in which the particle swarm optimization method is integrated that solves optimization problems in continuous spaces with the db-scan clustering technique, with the aim of addressing the combinatorial problem of the design of reinforced earth retaining walls. This algorithm optimizes two objective functions: the carbon emissions embedded and the economic cost of reinforced concrete walls. To assess the contribution of the db-scan operator in the optimization process, a random operator was designed. The best solutions, the averages, and the interquartile ranges of the obtained distributions are compared. The db-scan algorithm was then compared with a hybrid version that uses k-means as the discretization method and with a discrete implementation of the harmony search algorithm. The results indicate that the db-scan operator significantly improves the quality of the solutions and that the proposed metaheuristic shows competitive results with respect to the harmony search algorithm.


2012 ◽  
Vol 22 (1) ◽  
pp. 87-105 ◽  
Author(s):  
Timothy Ganesan ◽  
Pandian Vasant ◽  
Irraivan Elamvazuthy

A hybrid PSO approach for solving non-convex optimization problemsThe aim of this paper is to propose an improved particle swarm optimization (PSO) procedure for non-convex optimization problems. This approach embeds classical methods which are the Kuhn-Tucker (KT) conditions and the Hessian matrix into the fitness function. This generates a semi-classical PSO algorithm (SPSO). The classical component improves the PSO method in terms of its capacity to search for optimal solutions in non-convex scenarios. In this work, the development and the testing of the refined the SPSO algorithm was carried out. The SPSO algorithm was tested against two engineering design problems which were; ‘optimization of the design of a pressure vessel’ (P1) and the ‘optimization of the design of a tension/compression spring’ (P2). The computational performance of the SPSO algorithm was then compared against the modified particle swarm optimization (PSO) algorithm of previous work on the same engineering problems. Comparative studies and analysis were then carried out based on the optimized results. It was observed that the SPSO provides a better minimum with a higher quality constraint satisfaction as compared to the PSO approach in the previous work.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xiao Fu ◽  
Wangsheng Liu ◽  
Bin Zhang ◽  
Hua Deng

Quantum-behaved particle swarm optimization (QPSO) algorithm is a new PSO variant, which outperforms the original PSO in search ability but has fewer control parameters. However, QPSO as well as PSO still suffers from premature convergence in solving complex optimization problems. The main reason is that new particles in QPSO are generated around the weighted attractors of previous best particles and the global best particle. This may result in attracting too fast. To tackle this problem, this paper proposes a new QPSO algorithm called NQPSO, in which one local and one global neighborhood search strategies are utilized to balance exploitation and exploration. Moreover, a concept of opposition-based learning (OBL) is employed for population initialization. Experimental studies are conducted on a set of well-known benchmark functions including multimodal and rotated problems. Computational results show that our approach outperforms some similar QPSO algorithms and five other state-of-the-art PSO variants.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Qiangqiang Jiang ◽  
Yuanjun Guo ◽  
Zhile Yang ◽  
Zheng Wang ◽  
Dongsheng Yang ◽  
...  

Whale optimization algorithm (WOA), known as a novel nature-inspired swarm optimization algorithm, demonstrates superiority in handling global continuous optimization problems. However, its performance deteriorates when applied to large-scale complex problems due to rapidly increasing execution time required for huge computational tasks. Based on interactions within the population, WOA is naturally amenable to parallelism, prompting an effective approach to mitigate the drawbacks of sequential WOA. In this paper, field programmable gate array (FPGA) is used as an accelerator, of which the high-level synthesis utilizes open computing language (OpenCL) as a general programming paradigm for heterogeneous System-on-Chip. With above platform, a novel parallel framework of WOA named PWOA is presented. The proposed framework comprises two feasible parallel models called partial parallel and all-FPGA parallel, respectively. Experiments are conducted by performing WOA on CPU and PWOA on OpenCL-based FPGA heterogeneous platform, to solve ten well-known benchmark functions. Meanwhile, other two classic algorithms including particle swarm optimization (PSO) and competitive swarm optimizer (CSO) are adopted for comparison. Numerical results show that the proposed approach achieves a promising computational performance coupled with efficient optimization on relatively large-scale complex problems.


2020 ◽  
Vol 28 (3) ◽  
pp. 40-46
Author(s):  
Davood Sedaghat Shayegan ◽  
Alireza Lork ◽  
Seyed Amir Hossein Hashemi

AbstractIn this paper, we have developed an efficient hybrid meta-heuristic algorithm for structural cost optimization of a waffle slab and have also solved the relevant optimization problems. The cost of the waffle slab is considered to be the objective function, and the design is based on the American Concrete Institute’s ACI 318-08 standard. This algorithm utilizes the recently developed mouth-brooding fish (MBF) algorithm as the main engine and uses the favorable properties of the colliding bodies optimization (CBO) algorithm. The performance of this algorithm is compared with MBF, CBO, harmony search (HS), particle swarm optimization (PSO), democratic particle swarm optimization (DPSO), charged system search (CSS) and enhanced charged system search (ECSS). The numerical results demonstrate that the proposed algorithm can construct promising results and has merits in solving challenging optimization problems.


Sign in / Sign up

Export Citation Format

Share Document