Pixel and Microdot Detectors

This chapter describes pixel, microdot, and micropixel detectors. Their invention was inspired by A. Oed's work on MSGCs. In these detectors avalanche multiplication occurs near small anode dots/pixels instead of near anode strips. This naturally segments the detector area into independent active cells, or pixels, which can be attractive in some applications. For two-dimensional position measurements, each anode and cathode row is connected to the readout line. These readout lines are placed perpendicular to the anode/cathode rows. If necessary, each pixel can be connected to its own preamplifier. One of the advantages with this pixel geometry is that it allows gas gains that are ten times higher than what is achievable with MSGCs. This is due to that the electric field lines near the anode dots are radial, which is favorable for quenching surface streamers. Although up to now the microdot and micropin detectors remain in a stage of laboratory prototypes, this interesting concept recently gained new momentum after the development of microdot detectors with resistive electrodes. These innovative detectors satisfy the requirements of some application such as noble liquid Time Projection Chambers.

Instruments ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 9
Author(s):  
Sandro Palestini

The subject of space charge in ionization detectors is reviewed, showing how the observations and the formalism used to describe the effects have evolved, starting with applications to calorimeters and reaching recent, large time-projection chambers. General scaling laws, and different ways to present and model the effects are presented. The relations between space-charge effects and the boundary conditions imposed on the side faces of the detector are discussed, together with a design solution that mitigates some of the effects. The implications of the relative size of drift length and transverse detector size are illustrated. Calibration methods are briefly discussed.


2021 ◽  
Vol 23 (10) ◽  
pp. 6171-6181
Author(s):  
Yaoqi Gao ◽  
Baozeng Zhou ◽  
Xiaocha Wang

It is found that the biaxial strain, electric field and interlayer distance can effectively modulate the electronic structure and magnetic properties of two-dimensional van der Waals heterostructures.


2021 ◽  
Vol 259 ◽  
pp. 118121
Author(s):  
Guangping Fan ◽  
Dongmei Zhou ◽  
Zhenhua Zhang ◽  
Yuchun Ai ◽  
Weiguo Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document