Tribological Behavior of Ni-Based Self-Lubricating Composites at Elevated Temperatures

Author(s):  
Jianliang Li ◽  
Dangsheng Xiong ◽  
Yongkun Qin ◽  
Rajnesh Tyagi

This chapter illustrates the effect of the addition of solid lubricants on the high temperature friction and wear behavior of Ni-based composites. Ni-based composites containing solid lubricant particles both in nano and micrometer range have been fabricated through powder metallurgy route. In order to explore the possible synergetic action of a combination of low and high temperature solid lubricant, nano or micro powders of two or more solid lubricants were added in the composites. This chapter introduces the fabrication of the Ni-based self-lubricating composites containing graphite and/or MoS2, Ag and/or rare earth, Ag and/or hBN as solid lubricants and their friction and wear behavior at room and elevated temperatures. The chapter also includes information on some lubricating composite coatings such as electro-deposited nickel-base coating containing graphite, MoS2, or BN and graphene and their tribological characteristics.

Wear ◽  
2019 ◽  
Vol 426-427 ◽  
pp. 357-369 ◽  
Author(s):  
Venkata Naga Vamsi Munagala ◽  
Tyler B. Torgerson ◽  
Thomas W. Scharf ◽  
Richard R. Chromik

2012 ◽  
Vol 258 (17) ◽  
pp. 6384-6390 ◽  
Author(s):  
Yingke Kang ◽  
Xinhua Chen ◽  
Shiyong Song ◽  
Laigui Yu ◽  
Pingyu Zhang

2016 ◽  
Vol 879 ◽  
pp. 164-168
Author(s):  
Auezhan Amanov ◽  
Jun Hyong Kim ◽  
Young Sik Pyun

In this study, two different AISI 52100 bearing and D2 tool steels were subjected to ultrasonic nanocrystalline surface modification (UNSM) technique at ambient and high temperature of 500 °C. The objective of this study is to characterize the microstructure and to investigate the effectiveness of UNSM technique on the friction and wear behavior of those steels. The friction and wear behavior of the specimens against AISI52100 bearing steel ball with a diameter of 10 mm was carried out using a micro-tribo tester under dry conditions. The hardness with respect to depth from the top surface was measured using a microhardness. The change in the microstructure of the specimens before and after UNSM treatment was characterized by scanning electron microscopy (SEM). The findings from this preliminary study are expected to be implemented to the bearings and tools to increase the efficiency and performance of the components.


Sign in / Sign up

Export Citation Format

Share Document