micro dimples
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 30)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yonghong Fu ◽  
Jie Yang ◽  
Hao Wang ◽  
Yuyang He

Purpose This study aims to investigate the efficacy of micro dimple in inhibiting stick-slip phenomenon on the sliding guideway. Design/methodology/approach In this study, micro-dimples were fabricated by laser on surfaces of steel disk and guideway. The disks and guideways were respectively performed pin-on-disk tribological tests and working condition experiments to study differences in lubrication condition and friction stability between textured and untextured surfaces. Findings Micro-dimples help reduce critical sliding speed that allows contact surfaces to enter in hydrodynamic lubrication regime. This increases hydrodynamic lubrication range and narrows speed range where stick-slip phenomenon can occur, enhancing sliding guideway’s adaptability for broader working conditions. Furthermore, friction stability on the textured surface improved, lowering the occurrence possibility of stick-slip phenomenon. Finally, difference between static and kinetic frictions on the textured surface is lower relative to the untextured surface, which decreases the critical velocity when the stick-slip phenomenon occurs. Originality/value The results indicate that laser-textured micro-dimples are significantly conducive to inhibit stick-slip phenomenon, thus providing smoother movement for the guideway and eventually increasing precision of the machine.


Author(s):  
Ganesan Vignesh ◽  
Debabrata Barik ◽  
Samraj Aravind ◽  
Ponnusamy Ragupathi ◽  
Munusamy Arun

Forming micro-dimples nearer to the cutting edge on the rack face of the tungsten carbide cutting inserts will positively influence the machinability. However, it is challenging to machine the perfect micro-dimple dimensions by utilizing the available machining techniques. Finite element analysis can be an efficient way to observe the influence of dimple-texture area density, micro-dimple size, and various micro-dimple shapes on cutting inserts' machinability. This paper numerically analyses the impact of micro-dimple-textured cutting inserts in dry machining of AISI H-13 steel using AdvantEdge (virtual machining and finite element analysis software). Micro-dimples are formed on the rack face of tungsten carbide cutting inserts to observe the effect of dimple-textured cutting inserts on machinability compared to non-textured cutting inserts in terms of micro-dimple shape, micro-dimple size, and micro-dimple area density ratio. Their outcomes are analysed in terms of chip-insert contact length, main cutting force, and thrust force. It is observed that micro-dimple textured cutting inserts exhibit minimal main cutting force and thrust force in line with increasing the cutting insert life span. The abrasive wear was reduced in dimple-textured cutting inserts due to minimal contact between the cutting insert and chip developed compared to non-textured cutting inserts.


Author(s):  
Lin Zhong ◽  
Guirong Kang ◽  
Guorong Wang ◽  
Gang Wei ◽  
Zixuan Wang ◽  
...  

The failure of bit bearings is one of the main factors that restrict the life of a bit, and studies revealed that sealing and adhesive wear failure are common failure modes of bit bearings. To study the adaptability of the optimal textures to anti-wear and anti-friction performance of an 8 1/2” rock bit journal bearingunder sealing leakage conditions, the rheological properties of grease in the range of 0%–50% of the water-based drilling fluid volume in the compound lithium-based grease (rock bit grease) were tested. For the cylindrical dimples (diameter: 300 μm; depth: 40 μm, area ratio: 5%) and elliptical dimples (major and minor axis of 720 and 360 μm, respectively; depth: 40 μm, area ratio: 10%), the experimental study on the wear resistance of the optimized texture tribo-pairs was carried out as the grease invaded different drilling fluid contents based on the pin-disk pair. Results showed that the drilling fluid volume in the rock bit grease significantly affected the rheological properties of the grease. Furthermore, the cylindrical and elliptical dimples still had good anti-wear and anti-friction effects. Especially when the drilling fluid volume ratios in the grease reached 50%, the elliptical dimples can still reduce the friction coefficient and wear amount of the pair by 19.88% and 56.99%, respectively. With the increase of drilling fluid invasion into grease, the wear morphology of the un-textured tribo-pairs showed that the wear form changed from abrasive to adhesive wear, while that of the preferred textured tribo-pairs indicated slight abrasive wear.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1398
Author(s):  
Xianfu Liu ◽  
Jianhua Zhang ◽  
Li Li

The processing method, one-dimensional ultrasonic vibration-assisted turning (1D UVAT), is a potential and efficient way for fabricating a micro-textured surface. This paper aims at exploring the surface integrity and friction performance of brass H62 textured by the 1D UVAT. Four micro-textured surfaces with a specific distribution, size, and shape of dimples were fabricated by optimizing processing parameters, and the corresponding surface topography, subsurface microstructure, and surface roughness were observed and analyzed. A series of friction tests were carried out under oil-lubricating conditions to research the friction performance of micro-textured surfaces. The results show that the reason for the deviation between theoretical and experimental values of dimple depth was further revealed by observing the corresponding subsurface microstructure. The surface roughness of the micro-textured surfaces prepared is related to the number of micro-dimples per unit area and dimple size, which is greater than the surface generated by conventional turning. Compared with the polished surface and micro-grooved surface, the micro-textured surfaces have better friction performance with a lower frictional coefficient (COF) and wear degree. For the micro-textured surface fabricated by 1D UVAT, the number of micro-dimples per unit area has a great effect on the friction performance, and choosing a larger number is more conducive to improving the friction performance under the oil-lubricating condition. Consequently, this study proves that the proposed 1D UVAT can be a feasible candidate for preparing a micro-textured surface with better tribological property


2021 ◽  
Vol 67 (10) ◽  
pp. 525-533
Author(s):  
Kandasamy Ganesan Saravanan ◽  
◽  
Rajasekaran Thanigaivelan ◽  

Stainless steel (SS316L) is applied in numerous fields due to its intrinsic properties. In this study, micro-dimples were fabricated on SS316L. The effects of laser process parameters, such as frequency, average power, and pulse duration, on the average dimple diameter, dimple distance, and dimple depth were studied using an L9 orthogonal array. The analysis of variance (ANOVA) and multi-objective optimization technique, principal-component-analysis-coupled grey relational grade (GRG), was used to optimize laser process parameters on output responses. The optimal machining parameter settings obtained for the highest GRG peak value of 0.2642 are 15 kHz (frequency), 12 W (average power), and 1500 ns (pulse duration). The ANOVA results showed that average power is the most influential factor, contributing 86.40 % to performance measures (average dimple diameter (φ), dimple distance (d), and depth (l). Moreover, the effect of process parameters was studied using mean effect plots, and the micro-dimple quality was analysed using SEM micrographs.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1108
Author(s):  
Zhouzhi Gu ◽  
Xiaolei Chen ◽  
Zhongzheng Xu ◽  
Zhisen Ye ◽  
Guojun Li

Through-mask electrochemical micromachining (TMEMM) is a promising method to prepare micro dimples on the surface of metallic parts. However, the workpiece is machined one by one in traditional TMEMM. This paper introduced bidirectional pulse to TMEMM to improve the machining efficiency. Two masked workpieces were placed face to face, and connected to the ends of the bidirectional pulse power supply. Along with the change of the pulse direction, the polarities of the two workpieces were interchanged periodically, and micro dimples could be prepared on both workpieces at one time. The simulation and experiment results indicated that with bidirectional pulse mode, micro dimples with same the profile can be prepared on two workpieces at one time, and the dimension of micro dimple was smaller than that with unidirectional pulse mode. In bidirectional pulse current, the pulse frequency and pulse duty cycle played an important role on the preparation of micro dimple. With high pulse frequency and low pulse duty cycle, it is useful to reduce the undercut of micro dimple and improve the machining localization. With the pulse duty cycle of 20% and pulse frequency of 10 kHz, micro dimples with etch factor (EF) of 3 were well prepared on both workpieces surface.


Author(s):  
Mehdi Zamani ◽  
Masoud Farahnakian ◽  
Sadegh Elhami

Since the presentation of the cell adhesion concept, properties of the contact surface between osteoblasts and titanium implant and possible methods to enhance related characteristics have attracted much attention in orthopedic investigations. The creation of microtextures on the titanium implant is an important method to improve cell adhesion. This research includes the employment of Ultrasonic Assisted Turning (UAT) to create special microtextures on the titanium implant. Also, the developed interfacial ratio (Sdr) are analyzed to understand the effect of main surface characteristics on the adhesion behavior and parameters. Moreover, the effects of ultrasonic vibrations on Sdr are presented by theoretical relation and graphical modeling. Results showed micro dimples (textures) depth and width were a function of ultrasonic characteristics (amplitude and direction) and cutting speed of turning. Developed interfacial ratio (Sdr) was another surface parameter that improved by UAT (about 20% in geometrical simulations) while surface roughness did not change significantly by the application of UAT. SEM images show larger integrin and extended fibronectin of osteoblast which adhered to the textured surfaces. This result demonstrated the abilities of UAT to fabricate titanium implants with enhanced adhesion properties for osteoblast cells.


Author(s):  
Chengwei Kang ◽  
Fusheng Liang ◽  
Gang Shen ◽  
Dongxu Wu ◽  
Fengzhou Fang

Friction ◽  
2021 ◽  
Author(s):  
K. E. Ch. Vidyasagar ◽  
R. K. Pandey ◽  
Dinesh Kalyanasundaram

AbstractIn case of lightly loaded radial ball bearings, failure mechanisms other than fatigue such as smearing of raceways due to increased frictional torque and vibrations often prevail. Hence, attempts have been made herein for reducing the frictional torque and minimizing the vibrations of a radial deep groove ball bearing employing surface textures at the inner race. Nanosecond pulsed laser was used to create texture (involving micro-dimples having different dimple area density) on the inner race of test bearings. Using an in-house developed test rig, frictional torque and vibrational parameters were measured at different speeds and light loads (i.e. in vicinity of 0.01C, where C is dynamic load capacity of radial ball bearing). Significant reduction in frictional torque and overall vibrations were found in the presence of micro-dimples on inner race at light loads irrespective of operating speeds. Even without satisfying the minimum load needed criteria for the satisfactory operation, substantial reduction in smearing marks was found on the races of textured ball bearings in comparison to conventional cases.


Sign in / Sign up

Export Citation Format

Share Document