Fuzzy-Based Medical Image Processing

2015 ◽  
pp. 666-681
Author(s):  
G. R. Sinha

Medical Image Processing (MIP) is a set of tools applied over medical images, which consists of several components such as image acquisition, enhancement, segmentation, restoration, etc. The most important component of MIP is medical image segmentation used in Computer-Aided Diagnosis (CAD) systems used for detection of abnormalities in medical images. This chapter presents an overview and the importance of soft computing techniques in solving the problems of medical imaging. The authors highlight the significance of fuzzy-based clustering and similar methods for MIP and its applications. Fuzzy C-Means Clustering Method (FCM) is found the most suitable method among existing clustering methods for medical images. FCM addresses the problem of over-segmentation and helps in improvement of diagnosis accuracy. Application of optimization tool causes the reduction of execution time. A comparison of fuzzy-based methods over conventional methods suggests that neuro-fuzzy system as hybrid approach is an efficient method for medical image analysis.

Author(s):  
G. R. Sinha

Medical Image Processing (MIP) is a set of tools applied over medical images, which consists of several components such as image acquisition, enhancement, segmentation, restoration, etc. The most important component of MIP is medical image segmentation used in Computer-Aided Diagnosis (CAD) systems used for detection of abnormalities in medical images. This chapter presents an overview and the importance of soft computing techniques in solving the problems of medical imaging. The authors highlight the significance of fuzzy-based clustering and similar methods for MIP and its applications. Fuzzy C-Means Clustering Method (FCM) is found the most suitable method among existing clustering methods for medical images. FCM addresses the problem of over-segmentation and helps in improvement of diagnosis accuracy. Application of optimization tool causes the reduction of execution time. A comparison of fuzzy-based methods over conventional methods suggests that neuro-fuzzy system as hybrid approach is an efficient method for medical image analysis.


2013 ◽  
Vol 760-762 ◽  
pp. 1552-1555 ◽  
Author(s):  
Jing Jing Wang ◽  
Xiao Wei Song ◽  
Mei Fang

Image segmentation in medical image processing has been extensively used which has also been applied in different fields of medicine to assist doctors to make the correct judgment and grasp the patient's condition. However, nowadays there are no image threshold segmentation techniques that can be applied to all of the medical images; so it has became a challenging problem. In this paper, it applies a method of identifying edge of the tissues and organs to recognize its contour, and then selects a number of seed points on the contour range to locate the cancer area by region growing. And finally, the result has demonstrated that this method can mostly locate the cancer area accurately.


2010 ◽  
Vol 13 (4) ◽  
pp. 20-27
Author(s):  
Linh Duy Tran ◽  
Linh Quang Huynh

Along with the rapid development of diagnostic imaging equipment, software for medical image processing has played an important role in helping doctors and clinicians to reach accurate diagnoses. In this paper, methods to build a multipurpose tool based on Matlab programming language and its applications are presented. This new tool features enhancement, segmentation, registration and 3D reconstruction for medical images obtained from commonly used diagnostic imaging equipment.


Medical image segmentation results in the multiple fractioning of an input image for a deeper analysis/insight. Localization of objects and detection of boundaries are the coretheme of using segmentation for medical images. It elucidates the process of finding the anatomic structures in medical images. In this paper, we put forth a technique that has Fuzzy C-Means clustering and Artificial Bee Colony (ABC) Optimization has delivered the segmentation of MRA brain image. Artificial Bee Colony (ABC) has been used by many researchers as it is a population-based stochastic approach that has better search-inspace abilities for various optimization problems. The unsupervised clustering FCM has produced candidate outcomes in medical image processing. FCM is mostly preferable for segmenting the soft tissues in brain model, and it provides better output when compared to some of the competitive clustering techniques like KM, EM and KNN. The output of the suggested techniques is verified by using real MRA brain images. The results of Statistical parameters show that our method is notably better compared to other algorithms.


Author(s):  
Soumya Ranjan Nayak ◽  
Jibitesh Mishra

Fractal dimension is an emerging research area in order to characterize the complex or irritated objects found in nature. These complex objects are failed to analyze by classical Euclidian geometry. The concept of FD has extensively applied in many areas of application in image processing. The thought of the FD will work based upon the theory of self-similarity because it holds structures that are nested with one another. Over the last years, fractal geometry was applied extensively in medical image analysis in order to detect cancer cells in human body because our vascular system, nervous system, bones, and breast tissue are so complex and irregular in pattern, and also successfully applied in ECG signal, brain imaging for tumor detection, trabeculation analysis, etc. In order to analyze these complex structures, most of the researchers are adopting the concept of fractal geometry by means of box counting technique. This chapter presents an overview of box counting and its improved algorithms and how they work and their application in the field of medical image processing.


Author(s):  
S. Javeed Hussain ◽  
M. Praveen Raju ◽  
D. Satyanarayana ◽  
S. Asif Hussain ◽  
M. N. GiriPrasad ◽  
...  

Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 844
Author(s):  
Baixin Jin ◽  
Pingping Liu ◽  
Peng Wang ◽  
Lida Shi ◽  
Jing Zhao

Medical image segmentation is an important part of medical image analysis. With the rapid development of convolutional neural networks in image processing, deep learning methods have achieved great success in the field of medical image processing. Deep learning is also used in the field of auxiliary diagnosis of glaucoma, and the effective segmentation of the optic disc area plays an important assistant role in the diagnosis of doctors in the clinical diagnosis of glaucoma. Previously, many U-Net-based optic disc segmentation methods have been proposed. However, the channel dependence of different levels of features is ignored. The performance of fundus image segmentation in small areas is not satisfactory. In this paper, we propose a new aggregation channel attention network to make full use of the influence of context information on semantic segmentation. Different from the existing attention mechanism, we exploit channel dependencies and integrate information of different scales into the attention mechanism. At the same time, we improved the basic classification framework based on cross entropy, combined the dice coefficient and cross entropy, and balanced the contribution of dice coefficients and cross entropy loss to the segmentation task, which enhanced the performance of the network in small area segmentation. The network retains more image features, restores the significant features more accurately, and further improves the segmentation performance of medical images. We apply it to the fundus optic disc segmentation task. We demonstrate the segmentation performance of the model on the Messidor dataset and the RIM-ONE dataset, and evaluate the proposed architecture. Experimental results show that our network architecture improves the prediction performance of the base architectures under different datasets while maintaining the computational efficiency. The results render that the proposed technologies improve the segmentation with 0.0469 overlapping error on Messidor.


2010 ◽  
Vol 3 (1) ◽  
pp. 81 ◽  
Author(s):  
M. A. Yousuf ◽  
M. N. Nobi

In medical image processing, medical images are corrupted by different type of noises. It is very important to obtain precise images to facilitate accurate observations for the given application. Removing of noise from medical images is now a very challenging issue in the field of medical image processing. Most well known noise reduction methods, which are usually based on the local statistics of a medical image, are not efficient for medical image noise reduction. This paper presents an efficient and simple method for noise reduction from medical images. In the proposed method median filter is modified by adding more features. Experimental results are also compared with the other three image filtering algorithms. The quality of the output images is measured by the statistical quantity measures: peak signal-to-noise ratio (PSNR), signal-to-noise ratio (SNR) and root mean square error (RMSE). Experimental results of magnetic resonance (MR) image and ultrasound image demonstrate that the proposed algorithm is comparable to popular image smoothing algorithms.Key words: Magnetic resonance image; Ultrasound image; PSNR; SNR; RMSE.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v3i1.5544                J. Sci. Res. 3 (1), 81-89 (2011)


2015 ◽  
Vol 719-720 ◽  
pp. 1009-1012
Author(s):  
Yu Bin Jiao ◽  
Yan Lei Xu ◽  
Chao Feng

The image segmentation is very important in medical image processing. The paper studies the watershed segmentation, and over-segmentation is the main problem of watershed. Based on this, the paper proposed an improved watershed medical image segmentation method. And the corresponding simulation is done and the result show that the method can resolve the over-segmentation of watershed and can achieve good segmentation.


Sign in / Sign up

Export Citation Format

Share Document