Rich-Media Interactive Simulations

Author(s):  
Suzanne Tsacoumis

High fidelity measures have proven to be powerful tools for measuring a broad range of competencies and their validity is well documented. However, their high-touch nature is often a deterrent to their use due to the cost and time required to develop and implement them. In addition, given the increased reliance on technology to screen and evaluate job candidates, organizations are continuing to search for more efficient ways to gather the information they need about one's capabilities. This chapter describes how innovative, interactive rich-media simulations that incorporate branching technology have been used in several real-world applications. The main focus is on describing the nature of these assessments and highlighting potential solutions to the unique measurement challenges associated with these types of assessments.

Author(s):  
Roman Bresson ◽  
Johanne Cohen ◽  
Eyke Hüllermeier ◽  
Christophe Labreuche ◽  
Michèle Sebag

Multi-Criteria Decision Making (MCDM) aims at modelling expert preferences and assisting decision makers in identifying options best accommodating expert criteria. An instance of MCDM model, the Choquet integral is widely used in real-world applications, due to its ability to capture interactions between criteria while retaining interpretability. Aimed at a better scalability and modularity, hierarchical Choquet integrals involve intermediate aggregations of the interacting criteria, at the cost of a more complex elicitation. The paper presents a machine learning-based approach for the automatic identification of hierarchical MCDM models, composed of 2-additive Choquet integral aggregators and of marginal utility functions on the raw features from data reflecting expert preferences. The proposed NEUR-HCI framework relies on a specific neural architecture, enforcing by design the Choquet model constraints and supporting its end-to-end training. The empirical validation of NEUR-HCI on real-world and artificial benchmarks demonstrates the merits of the approach compared to state-of-art baselines.


2021 ◽  
pp. 1-29
Author(s):  
Ben Kreuter ◽  
Sarvar Patel ◽  
Ben Terner

Private set intersection and related functionalities are among the most prominent real-world applications of secure multiparty computation. While such protocols have attracted significant attention from the research community, other functionalities are often required to support a PSI application in practice. For example, in order for two parties to run a PSI over the unique users contained in their databases, they might first invoke a support functionality to agree on the primary keys to represent their users. This paper studies a secure approach to agreeing on primary keys. We introduce and realize a functionality that computes a common set of identifiers based on incomplete information held by two parties, which we refer to as private identity agreement, and we prove the security of our protocol in the honest-but-curious model. We explain the subtleties in designing such a functionality that arise from privacy requirements when intending to compose securely with PSI protocols. We also argue that the cost of invoking this functionality can be amortized over a large number of PSI sessions, and that for applications that require many repeated PSI executions, this represents an improvement over a PSI protocol that directly uses incomplete or fuzzy matches.


2021 ◽  
Author(s):  
Jesús Giráldez-Cru ◽  
Pedro Almagro-Blanco

The remarkable advances in SAT solving achieved in the last years have allowed to use this technology in many real-world applications of Artificial Intelligence, such as planning, formal verification, and scheduling, among others. Interestingly, these industrial SAT problems are commonly believed to be easier than classical random SAT formulas, but estimating their actual hardness is still a very challenging question, which in some cases even requires to solve them. In this context, realistic pseudo-industrial random SAT generators have emerged with the aim of reproducing the main features shared by the majority of these application problems. The study of these models may help to better understand the success of those SAT solving techniques and possibly improve them. In this work, we present a model to estimate the temperature of real-world SAT instances. This temperature represents the degree of distortion into the expected structure of the formula, from highly structured benchmarks (more similar to real-world SAT instances) to the complete absence of structure (observed in the classical random SAT model). Our solution is based on the Popularity-Similarity (PS) random model for SAT, which has been recently presented to reproduce two crucial features of application SAT benchmarks: scale-free and community structures. The PS model is able to control the hardness of the generated formula by introducing some randomizations in the expected structure. Our solution is a first step towards a hardness oracle based on the temperature of SAT formulas, which may be able to estimate the cost of solving real-world SAT instances without solving them.


Author(s):  
David Mathias ◽  
Ben Hicks ◽  
Chris Snider

AbstractPhysical prototyping is critical activity in the produce development process, but the cost and time required to produce prototypes hinders it use in the design process. Hybrid prototyping through coupling LEGO and FDM printing is presented as an approach to address these issues. After establishing the separate design rules for FDM printing and LEGO, this paper created new set of rules called Design for Fabrication (DfF) for hybrid prototyping. These cover the three main considerations (Technical, Process, and Design) that the designer and process planning must include to practically implement LEGO and FDM hybrid prototyping. The DfF rules were considered in a prototype of a computer mouse. While the fabrication time was not reduced as expected, it showed that the rules could be practically implemented in a real-world example. Additional considerations were identified that are to be included in the DfF rules.Further work is required to realise the predicted step-change reduction in fabrication time. The first approach is to leverage multiple printers to parallelise the printing. The second is to reduce fidelity while maintaining high fidelity in key regions of interest.


2017 ◽  
Author(s):  
Santi J. Vives

Hash-based signatures use a one-time signature (OTS) as its main building block, and transform it into a many-times scheme, to sign a larger number of signatures. In known constructions, the cost and the size of each signature increase as the number of needed signatures grows. In real-world applications, requiring a significant number of signatures, the signatures can get quite large. As a result, it is usually believed that post-quantum signatures based on hashes need more computation and much larger sizes than classical signatures. We introduce a construction to challenge that idea: we show that it is possible to construct a many-times signatures scheme that is more efficient than the OTS it is built from, rather than less.We study the generation of signatures in conjunction with a blockchain, like bitcoin. The proposed scheme permits an unlimited number of signatures. The size of each signatures is constant and the same as in the OTS. The verification cost starts the same as in the OTS and decreases with each new signature, becoming more efficient on average as the number of signatures grows.


2021 ◽  
Vol 1 (161) ◽  
pp. 223-229
Author(s):  
Y. Rachenko ◽  
N. Dotsenko

The challenges of interviewing candidates for positions in cybersecure communications of aerospace industry. Data and experiments conducted as evidence that the improvements to the current model of selecting employees are needed in the real-world applications. A proposal of a newly developed method of selecting job candidates using information technology.


2001 ◽  
Vol 21 (2) ◽  
pp. 199-218 ◽  
Author(s):  
Fernando Chiyoshi ◽  
Roberto D. Galvão ◽  
Reinaldo Morabito

The objective of the present paper is to analyze the use and solution of the hypercube model for the case of non-homogeneous servers (servers with different mean service times). Systems with non-homogeneous servers can be found in several real world applications, such as for example in the provision of Emergency Medical Services (EMS) in some Brazilian cities. The importance of explicitly considering non-homogeneous servers in the hypercube model is initially demonstrated through an illustrative example. It is then shown that the solution for the non-homogeneous case can be advantageously obtained by the method of Gauss-Siedel. This method was tested for a network of 55 nodes, in models with between 10 and 17 servers, with the total system workload varying between 0.1 and 0.9. Finally, a regression model is proposed to estimate the computing time required to solve a specific problem


TAPPI Journal ◽  
2012 ◽  
Vol 11 (7) ◽  
pp. 29-35 ◽  
Author(s):  
PETER W. HART ◽  
DALE E. NUTTER

During the last several years, the increasing cost and decreasing availability of mixed southern hardwoods have resulted in financial and production difficulties for southern U.S. mills that use a significant percentage of hardwood kraft pulp. Traditionally, in the United States, hardwoods are not plantation grown because of the growth time required to produce a quality tree suitable for pulping. One potential method of mitigating the cost and supply issues associated with the use of native hardwoods is to grow eucalyptus in plantations for the sole purpose of producing hardwood pulp. However, most of the eucalyptus species used in pulping elsewhere in the world are not capable of surviving in the southern U.S. climate. This study examines the potential of seven different cold-tolerant eucalyptus species to be used as replacements for, or supplements to, mixed southern hardwoods. The laboratory pulping and bleaching aspects of these seven species are discussed, along with pertinent mill operational data. Selected mill trial data also are reviewed.


Sign in / Sign up

Export Citation Format

Share Document