Selection of Wavelet Features for Biomedical Signals Using SVM Learning

Author(s):  
Girisha Garg ◽  
Vijander Singh

Signal processing problems require feature extraction and selection techniques. A novel Wavelet Feature Selection algorithm is proposed for ranking and selecting the features from the wavelet decompositions. The algorithm makes use of support vector machine to rank the features and backward feature elimination to remove the features. The finally selected features are used as patterns for the classification system. Two EEG datasets are used to test the algorithm. The results confirm that the algorithm is able to improve the efficiency of wavelet features in terms of accuracy and feature space.

2018 ◽  
Vol 1 (2) ◽  
pp. 109-117
Author(s):  
Muhammad Imron Rosadi ◽  
Cahya Bagus Sanjaya ◽  
Lukman Hakim

Diabetic Retinopathy is a disease common complications of diabetes mellitus. The complications in the form of damages on the part of the retina of the eye.  The high levels of glucose in the blood are the cause of small capillaries become broke and can lead to blindness. The symptoms shown by the sufferers of Diabetic Retinopaythy (DR), among others, microaneurysms, hemorrhages, exudates, soft hard exudate and neovascularization. These symptoms are at a certain intensity can be an indicator of the phase (the level of severity) DR sufferers. There are four stages of the process of pattern recognition, namely preprocessing,feature ekstraction, feature selection and classification. On preprocessing the image do Change the RGB image into Green channel, image Adaptive Histogram Equalization, removal of blood vessels, removal of optic disks, detection of exudate. A collection from the results of preprocessing placed in the vector of characteristics by using the feature extraction of GLCM consisting of order 1 and 2, to order then conducted as input Support Vector Machine (SVM). While in SVM there are three issues that emerged, namely; How to select a kernel function, what is the optimal number of input features, and how to determine the best kernel parameters. These issues are important, because the number of features affect the required kernel parameters values and vice versa, so that the selection of the features required in building the classification system. On the research of feature extraction methods was presented GLCM, features selection, and SVM for detecting diabetic retinopathy. feature selection process using the F-Score feature to select the results of features extraction. From the results of the selection of these features is used to input the classification. The dataset used amounted to 50 data, which is divided into 2 classes, where 25 sets taken from normal retinal scans and 25 sets of the rest of the scan of the retina with diabetic retinopathy. SVM classification with feature selection to increase accuracy and computational time than lose without a selection of features with a value of 90% accuracy and computational time 0.010 seconds.


Repositor ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Hendra Saputra ◽  
Setio Basuki ◽  
Mahar Faiqurahman

AbstrakPertumbuhan Malware Android telah meningkat secara signifikan seiring dengan majunya jaman dan meninggkatnya keragaman teknik dalam pengembangan Android. Teknik Machine Learning adalah metode yang saat ini bisa kita gunakan dalam memodelkan pola fitur statis dan dinamis dari Malware Android. Dalam tingkat keakurasian dari klasifikasi jenis Malware peneliti menghubungkan antara fitur aplikasi dengan fitur yang dibutuhkan dari setiap jenis kategori Malware. Kategori jenis Malware yang digunakan merupakan jenis Malware yang banyak beredar saat ini. Untuk mengklasifikasi jenis Malware pada penelitian ini digunakan Support Vector Machine (SVM). Jenis SVM yang akan digunakan adalah class SVM one against one menggunakan Kernel RBF. Fitur yang akan dipakai dalam klasifikasi ini adalah Permission dan Broadcast Receiver. Untuk meningkatkan akurasi dari hasil klasifikasi pada penelitian ini digunakan metode Seleksi Fitur. Seleksi Fitur yang digunakan ialah Correlation-based Feature  Selection (CSF), Gain Ratio (GR) dan Chi-Square (CHI). Hasil dari Seleksi Fitur akan di evaluasi bersama dengan hasil yang tidak menggunakan Seleksi Fitur. Akurasi klasifikasi Seleksi Fitur CFS menghasilkan akurasi sebesar 90.83% , GR dan CHI sebesar 91.25% dan data yang tidak menggunakan Seleksi Fitur sebesar 91.67%. Hasil dari pengujian menunjukan bahwa Permission dan Broadcast Receiver bisa digunakan dalam mengklasifikasi jenis Malware, akan tetapi metode Seleksi Fitur yang digunakan mempunyai akurasi yang berada sedikit dibawah data yang tidak menggunakan Seleksi Fitur. Kata kunci: klasifikasi malware android, seleksi fitur, SVM dan multi class SVM one agains one  Abstract Android Malware has growth significantly along with the advance of the times and the increasing variety of technique in the development of Android. Machine Learning technique is a method that now we can use in the modeling the pattern of a static and dynamic feature of Android Malware. In the level of accuracy of the Malware type classification, the researcher connect between the application feature with the feature required by each types of Malware category. The category of malware used is a type of Malware that many circulating today, to classify the type of Malware in this study used Support Vector Machine (SVM). The SVM type wiil be used is class SVM one against one using the RBF Kernel. The feature will be used in this classification are the Permission and Broadcast Receiver.  To improve the accuracy of the classification result in this study used Feature Selection method. Selection of feature used are Correlation-based Feature Selection (CFS), Gain Ratio (GR) and Chi-Square (CHI). Result from Feature Selection will be evaluated together with result that not use Feature Selection. Accuracy Classification Feature Selection CFS result accuracy of 90.83%, GR and CHI of 91.25% and data that not use Feature Selection of 91.67%. The result of testing indicate that permission and broadcast receiver can be used in classyfing type of Malware, but the Feature Selection method that used have accuracy is a little below the data that are not using Feature Selection. Keywords: Classification Android Malware, Feature Selection, SVM and Multi Class SVM one against one


Author(s):  
Marwa Ben Salah ◽  
Ameni Yengui ◽  
Mahmoud Neji

In this paper, we present two steps in the process of automatic annotation in archeological images. These steps are feature extraction and feature selection. We focus our research on archeological images which are very much studied in our days. It presents the most important steps in the process of automatic annotation in an image. Feature extraction techniques are applied to get the feature that will be used in classifying and recognizing the images. Also, the selection of characteristics reduces the number of unattractive characteristics. However, we reviewed various images of feature extraction techniques to analyze the archaeological images. Each feature represents one or more feature descriptors in the archeological images. We focus on the descriptor shape of the archaeological objects extraction in the images using contour method-based shape recognition of the monuments. So, the feature selection stage serves to acquire the most interesting characteristics to improve the accuracy of the classification. In the feature selection section, we present a comparative study between feature selection techniques. Then we give our proposal of application of methods of selection of the characteristics of the archaeological images. Finally, we calculate the performance of two steps already mentioned: the extraction of characteristics and the selection of characteristics.


2013 ◽  
Vol 321-324 ◽  
pp. 1181-1185
Author(s):  
Yong Jun Zhu ◽  
Wen Bo Liu ◽  
Feng Yu Jin ◽  
Yin Wu

The way of kernel function has been widely applied in machine learning field, such as artificial neural network and support vector machine, for avoiding dimensional disaster of feature space and improving performance of learning machine effectively. The selection of kernel function and construction of new kernel are the core problems, which have a direct relation with the performance of classification, and the research of this field is not enough. In this paper support vector machine (SVM) was used as an example, and the performance of common kernel functions was evaluated through observing and computing the features of kernel matrix. Base on this, a new mixed kernel function was gotten by optimization of kernel functions, and the experimental data proved that the performance of SVM was improved by the mixed kernel function. If the weighting coefficient was selected properly, the correct rate could even reach to 100%. What’s more, not only a method to construct a new learning machine was given, but also a reference for selecting kernel function was given.


Author(s):  
Kwang Ho Park ◽  
Erdenebileg Batbaatar ◽  
Yongjun Piao ◽  
Nipon Theera-Umpon ◽  
Keun Ho Ryu

Hematopoietic cancer is a malignant transformation in immune system cells. Hematopoietic cancer is characterized by the cells that are expressed, so it is usually difficult to distinguish its heterogeneities in the hematopoiesis process. Traditional approaches for cancer subtyping use statistical techniques. Furthermore, due to the overfitting problem of small samples, in case of a minor cancer, it does not have enough sample material for building a classification model. Therefore, we propose not only to build a classification model for five major subtypes using two kinds of losses, namely reconstruction loss and classification loss, but also to extract suitable features using a deep autoencoder. Furthermore, for considering the data imbalance problem, we apply an oversampling algorithm, the synthetic minority oversampling technique (SMOTE). For validation of our proposed autoencoder-based feature extraction approach for hematopoietic cancer subtype classification, we compared other traditional feature selection algorithms (principal component analysis, non-negative matrix factorization) and classification algorithms with the SMOTE oversampling approach. Additionally, we used the Shapley Additive exPlanations (SHAP) interpretation technique in our model to explain the important gene/protein for hematopoietic cancer subtype classification. Furthermore, we compared five widely used classification algorithms, including logistic regression, random forest, k-nearest neighbor, artificial neural network and support vector machine. The results of autoencoder-based feature extraction approaches showed good performance, and the best result was the SMOTE oversampling-applied support vector machine algorithm consider both focal loss and reconstruction loss as the loss function for autoencoder (AE) feature selection approach, which produced 97.01% accuracy, 92.60% recall, 99.52% specificity, 93.54% F1-measure, 97.87% G-mean and 95.46% index of balanced accuracy as subtype classification performance measures.


2014 ◽  
Vol 552 ◽  
pp. 128-132
Author(s):  
Wei Feng Yao ◽  
Xiao Bao Jia

Support Vector Machine (SVM) implicitly maps samples from the lower-dimensional feature space to a higher-dimensional space, and designs a non-linear classifier via optimize the linear classifier in the higher-dimensional space. This paper proposed an improved SVM method based on feature extension and feature selection. The method explicitly maps the samples to a higher-dimensional feature space, perform the feature selection in the space, and finally design a linear classifier with a selected feature set. This paper illustrated the reason why the generalization ability is improved by this technique. The experiment results on benchmark datasets show that the improved SVM greatly decreases the error rate compared with other classifiers, which proves the feasibility of the proposed SVM.


Teknologi ◽  
2016 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
Muhammad I. Rosadi ◽  
Agus Z. Arifin ◽  
Anny Yuniarti

ABSTRAKKanker payudara adalah penyakit yang paling umum diderita oleh perempuan pada banyak negara. Pemeriksaan kanker payudara dapat dilakukan menggunakan citra Mammogram dengan teknologi sistem Computer-Aided Detection (CAD). Analisis CAD yang telah dikembangkan adalah ekstraksi fitur GLCM, reduksi/seleksi fitur, dan SVM. Pada SVM (Support Vector Machine) maupun LS-SVM (Least Square Support Vector Machine) terdapat tiga masalah yang muncul, yaitu: Bagaimana memilih fungsi kernel, berapa jumlah fitur input yang dioptimalkan, dan bagaimana menentukan parameter kernel terbaik. Jumlah fitur dan nilai parameter kernel yang diperlukan saling mempengaruhi, sehingga seleksi fitur diperlukan dalam membangun sistem klasifikasi. Pada penelitian ini bertujuan untuk mengklasifikasi massa pada citra Mammogram berdasarkan dua kelas yaitu kelas kanker jinak dan kelas kanker ganas. Ekstraksi fitur menggunakan Gray Level Co-occurrence Matrix (GLCM). Hasil proses ekstraksi fitur tersebut kemudian diseleksi mengunakan metode F-Score. F-Score diperoleh dengan menghitung nilai diskriminan data hasil ekstraksi fitur di antara data dua kelas pada data training. Nilai F-Score masing-masing fitur kemudian diurutkan secara descending. Hasil pengurutan tersebut digunakan untuk membuat kombinasi fitur. Kombinasi fitur tersebut digunakan sebagai input LS-SVM. Dari hasil uji coba penelitian ini didapatkan, bahwa menggunakan kombinasi seleksi fitur sangat berpengaruh terhadap tingkat akurasi. Akurasi terbaik didapat dengan menggunakan LS-SVM RBF dan SVM RBF baik dengan kombinasi seleksi fitur, maupun tanpa kombinasi seleksi fitur dengan nilai akurasi yaitu 97,5%. Selain itu juga seleksi fitur mampu mengurangi waktu komputasi.Kata Kunci: F-Score, GLCM, kanker payudara, LS-SVM.ABSTRACTBreast cancer is the most common disease suffered by women in many countries. Breast cancer screening can be done using a mammogram image. Computer-aided detection system (CAD). CAD analysis that has been developed is GLCM efficient feature extraction, reduction / feature selection and SVM. In SVM (Support Vector Machine) and LS-SVM (Support Vector Machine Square least) there are three problems that arise, namely; how to choose the kernel function, how many input fea-tures are optimal, and how to determine the best kernel parameters. The number of fea-tures and value required kernel parameters affect each other, so that the selection of the features needed to build a system of classification. In this study aims to classify image of masses on digital mammography based on two classes benign cancer and malignant cancer. Feature extraction using gray level co-occurrence matrix (GLCM). The results of the feature extraction process then selected using the method F-Score. F-Score is obtained by calculating the value of the discriminant feature extraction results data between two classes of data in the data training. Value F-Score of each feature and then sorted in descending order. The sequenc-ing results are used to make the combination of fea-tures. The combination of these features are used as input LS-SVM. From the experiments that use a combination of feature selection affects the accuracy ting-kat. Best accuracy obtained using LS-SVM and SVM RBF RBF with combi-nation or without the combination of feature selection with accuracy value is 97.5%. It also features a selection able to curate the computa-tion time.Keywords: Breast Cancer, F-Score, GLCM, LS-SVM.


Sign in / Sign up

Export Citation Format

Share Document