Image Registration Techniques and Frameworks

Author(s):  
Sayan Chakraborty ◽  
Prasenjit Kumar Patra ◽  
Prasenjit Maji ◽  
Amira S. Ashour ◽  
Nilanjan Dey

Image registration allude to transforming one image with reference to another (geometrically alignment of reference and sensed images) i.e. the process of overlaying images of the same scene, seized by assorted sensors, from different viewpoints at variant time. Virtually all large image evaluating or mining systems require image registration, as an intermediate step. Over the years, a broad range of techniques has been flourished for various types of data and problems. These approaches are classified according to their nature mainly as area-based and feature-based and on four basic tread of image registration procedure namely feature detection, feature matching, mapping function design, and image transformation and resampling. The current chapter highlights the cogitation effect of four different registration techniques, namely Affine transformation based registration, Rigid transformation based registration, B-splines registration, and Demons registration. It provides a comparative study among all of these registration techniques as well as different frameworks involved in registration process.

2007 ◽  
Vol 19 (06) ◽  
pp. 359-374 ◽  
Author(s):  
Yih-Chih Chiou ◽  
Chern-Sheng Lin ◽  
Cheng-Yu Lin

Mammogram registration is a critical step in automatic detection of breast cancer. Much research has been devoted to registering mammograms using either feature-matching or similarity measure. However, a few studies have been done on combining these two methods. In this research, a hybrid mammogram registration method for the early detection of breast cancer is developed by combining feature-based and intensity-based image registration techniques. Besides, internal and external features were used simultaneously during the registration to obtain a global spatial transformation. The experimental results indicates that the similarity between the two mammograms increases significantly after a proper registration using the proposed TPS-registration procedures.


Author(s):  
W. Wan ◽  
M. Peng ◽  
Y. Xing ◽  
Y. Wang ◽  
Z. Liu ◽  
...  

Feature detection and matching are key techniques in computer vision and robotics, and have been successfully implemented in many fields. So far there is no performance comparison of feature detectors and matching methods for planetary mapping and rover localization using rover stereo images. In this research, we present a comprehensive evaluation and comparison of six feature detectors, including Moravec, Förstner, Harris, FAST, SIFT and SURF, aiming for optimal implementation of feature-based matching in planetary surface environment. To facilitate quantitative analysis, a series of evaluation criteria, including distribution evenness of matched points, coverage of detected points, and feature matching accuracy, are developed in the research. In order to perform exhaustive evaluation, stereo images, simulated under different baseline, pitch angle, and interval of adjacent rover locations, are taken as experimental data source. The comparison results show that SIFT offers the best overall performance, especially it is less sensitive to changes of image taken at adjacent locations.


2019 ◽  
Vol 7 (6) ◽  
pp. 178
Author(s):  
Armagan Elibol ◽  
Nak Young Chong

Image registration is one of the most fundamental and widely used tools in optical mapping applications. It is mostly achieved by extracting and matching salient points (features) described by vectors (feature descriptors) from images. While matching the descriptors, mismatches (outliers) do appear. Probabilistic methods are then applied to remove outliers and to find the transformation (motion) between images. These methods work in an iterative manner. In this paper, an efficient way of integrating geometric invariants into feature-based image registration is presented aiming at improving the performance of image registration in terms of both computational time and accuracy. To do so, geometrical properties that are invariant to coordinate transforms are studied. This would be beneficial to all methods that use image registration as an intermediate step. Experimental results are presented using both semi-synthetically generated data and real image pairs from underwater environments.


2019 ◽  
Vol 11 (12) ◽  
pp. 1418
Author(s):  
Zhaohui Zheng ◽  
Hong Zheng ◽  
Yong Ma ◽  
Fan Fan ◽  
Jianping Ju ◽  
...  

In feature-based image matching, implementing a fast and ultra-robust feature matching technique is a challenging task. To solve the problems that the traditional feature matching algorithm suffers from, such as long running time and low registration accuracy, an algorithm called feedback unilateral grid-based clustering (FUGC) is presented which is able to improve computation efficiency, accuracy and robustness of feature-based image matching while applying it to remote sensing image registration. First, the image is divided by using unilateral grids and then fast coarse screening of the initial matching feature points through local grid clustering is performed to eliminate a great deal of mismatches in milliseconds. To ensure that true matches are not erroneously screened, a local linear transformation is designed to take feedback verification further, thereby performing fine screening between true matching points deleted erroneously and undeleted false positives in and around this area. This strategy can not only extract high-accuracy matching from coarse baseline matching with low accuracy, but also preserves the true matching points to the greatest extent. The experimental results demonstrate the strong robustness of the FUGC algorithm on various real-world remote sensing images. The FUGC algorithm outperforms current state-of-the-art methods and meets the real-time requirement.


2018 ◽  
Vol 10 (11) ◽  
pp. 1837 ◽  
Author(s):  
Chu He ◽  
Peizhang Fang ◽  
Dehui Xiong ◽  
Wenwei Wang ◽  
Mingsheng Liao

Automatic image registration of optical-to-Synthetic aperture radar (SAR) images is difficult because of the inconsistency of radiometric and geometric properties between the optical image and the SAR image. The intensity-based methods may require many calculations and be ineffective when there are geometric distortions between these two images. The feature-based methods have high requirements on features, and there are certain challenges in feature extraction and matching. A new automatic optical-to-SAR image registration framework is proposed in this paper. First, modified holistically nested edge detection is employed to detect the main contours in both the optical and SAR images. Second, a mesh grid strategy is presented to perform a coarse-to-fine registration. The coarse registration calculates the feature matching and summarizes the preliminary results for the fine registration process. Finally, moving direct linear transformation is introduced to perform a homography warp to alleviate parallax. The experimental results show the effectiveness and accuracy of our proposed method.


2021 ◽  
Vol 13 (9) ◽  
pp. 1657
Author(s):  
Junyan Lu ◽  
Hongguang Jia ◽  
Tie Li ◽  
Zhuqiang Li ◽  
Jingyu Ma ◽  
...  

Feature-based remote sensing image registration methods have achieved great accomplishments. However, they have faced some limitations of applicability, automation, accuracy, efficiency, and robustness for large high-resolution remote sensing image registration. To address the above issues, we propose a novel instance segmentation based registration framework specifically for large-sized high-resolution remote sensing images. First, we design an instance segmentation model based on a convolutional neural network (CNN), which can efficiently extract fine-grained instances as the deep features for local area matching. Then, a feature-based method combined with the instance segmentation results is adopted to acquire more accurate local feature matching. Finally, multi-constraints based on the instance segmentation results are introduced to work on the outlier removal. In the experiments of high-resolution remote sensing image registration, the proposal effectively copes with the circumstance of the sensed image with poor positioning accuracy. In addition, the method achieves superior accuracy and competitive robustness compared with state-of-the-art feature-based methods, while being rather efficient.


Author(s):  
Suresha .M ◽  
. Sandeep

Local features are of great importance in computer vision. It performs feature detection and feature matching are two important tasks. In this paper concentrates on the problem of recognition of birds using local features. Investigation summarizes the local features SURF, FAST and HARRIS against blurred and illumination images. FAST and Harris corner algorithm have given less accuracy for blurred images. The SURF algorithm gives best result for blurred image because its identify strongest local features and time complexity is less and experimental demonstration shows that SURF algorithm is robust for blurred images and the FAST algorithms is suitable for images with illumination.


2021 ◽  
Vol 205 ◽  
pp. 106085
Author(s):  
Monire Sheikh Hosseini ◽  
Mahammad Hassan Moradi ◽  
Mahdi Tabassian ◽  
Jan D'hooge

2018 ◽  
Vol 4 (1) ◽  
pp. 555-558 ◽  
Author(s):  
Fang Chen ◽  
Jan Müller ◽  
Jens Müller ◽  
Ronald Tetzlaff

AbstractIn this contribution we propose a feature-based method for motion estimation and correction in intraoperative thermal imaging during brain surgery. The motion is estimated from co-registered white-light images in order to perform a robust motion correction on the thermographic data. To ensure real-time performance of an intraoperative application, we optimise the processing time which essentially depends on the number of key points found by our algorithm. For this purpose we evaluate the effect of applying an non-maximum suppression (NMS) to improve the feature detection efficiency. Furthermore we propose an adaptive method to determine the size of the suppression area, resulting in a trade-off between accuracy and processing time.


Sign in / Sign up

Export Citation Format

Share Document