A Comparison of Transport Modes in Terms of Energy Consumption

Author(s):  
Zafer Yilmaz ◽  
Serpil Erol ◽  
Ebru Vesile Öcalir-Akunal

Energy consumption of transport modes are partly dependent on the chosen travel mode. For specific OD pairs a comparison of travel modes in terms of energy consumption gives an idea of the possibilities to change the energy budget of a city. In this study a comparison of transport modes in terms of energy consumption is given for two chosen routes in the case study of Ankara, Turkey. The results show that there are differences with respect to chosen travel mode in terms of energy use and travel cost reflected to traveler for a certain OD couple.

Author(s):  
Zafer Yilmaz ◽  
Serpil Erol ◽  
Ebru Vesile Öcalir-Akunal

Energy consumption of transport modes are partly dependent on the chosen travel mode. For specific OD pairs a comparison of travel modes in terms of energy consumption gives an idea of the possibilities to change the energy budget of a city. In this study a comparison of transport modes in terms of energy consumption is given for two chosen routes in the case study of Ankara, Turkey. The results show that there are differences with respect to chosen travel mode in terms of energy use and travel cost reflected to traveler for a certain OD couple.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Arif Budiyanto ◽  
Muhammad Hanzalah Huzaifi ◽  
Simon Juanda Sirait ◽  
Putu Hangga Nan Prayoga

AbstractSustainable development of container terminals is based on energy efficiency and reduction in CO2 emissions. This study estimated the energy consumption and CO2 emissions in container terminals according to their layouts. Energy consumption was calculated based on utility data as well as fuel and electricity consumptions for each container-handling equipment in the container terminal. CO2 emissions were estimated using movement modality based on the number of movements of and distance travelled by each container-handling equipment. A case study involving two types of container terminal layouts i.e. parallel and perpendicular layouts, was conducted. The contributions of each container-handling equipment to the energy consumption and CO2 emissions were estimated and evaluated using statistical analysis. The results of the case study indicated that on the CO2 emissions in parallel and perpendicular layouts were relatively similar (within the range of 16–19 kg/TEUs). These results indicate that both parallel and perpendicular layouts are suitable for future ports based on sustainable development. The results can also be used for future planning of operating patterns and layout selection in container terminals.


2020 ◽  
Vol 244 ◽  
pp. 118551 ◽  
Author(s):  
Eric Alberto Ocampo Batlle ◽  
José Carlos Escobar Palacio ◽  
Electo Eduardo Silva Lora ◽  
Arnaldo Martín Martínez Reyes ◽  
Maurish Melian Moreno ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2123 ◽  
Author(s):  
Lamberto Tronchin ◽  
Kristian Fabbri ◽  
Chiara Bertolli

Indoor air quality (IAQ) of buildings is a problem that affects both comfort for occupants and the energy consumption of the structure. Controlled mechanical ventilation systems (CMVs) make it possible to control the air exchange rate. When using CMV systems, it is interesting to investigate the relationship between the useful thermal energy requirements for ventilation and the energy consumption of these systems. This paper addresses whether there is a correlation between these two parameters. The methodology used in this work involves the application of equations of technical Italian regulations UNI/TS 11300 applied to a case study. The case study is represented by a 54 m3 room, which is assumed to have three CMV systems installed (extraction, insertion, insertion and extraction) for twenty different devices available on the market. Afterwards, simulations of useful thermal energy requirements QH,ve and primary energy EP,V were performed according to the electrical power of each fan W and the ventilation flow. The results show that the two values are not linearly correlated: it is not possible to clearly associate the operating cost for CMV systems according to building requirements. The study also shows that CMV systems are particularly efficient for high-performance buildings, where there is no leakage that can be ascribed to windows infiltrations.


Author(s):  
Madhusudan Iyengar ◽  
Roger R. Schmidt

The increasingly ubiquitous nature of computer and internet usage in our society, has driven advances in semiconductor technology, server packaging, and cluster level optimizations, in the IT industry. Not surprisingly this has an impact on our societal infrastructure with respect to providing the requisite energy to fuel these power hungry machines. Cooling has been found to contribute to about a third of the total data center energy consumption, and is the focus of this study. In this paper we develop and present physics based models to allow the prediction of the energy consumption and heat transfer phenomenon in a data center. These models allow the estimation of the microprocessor junction and server inlet air temperatures for different flow and temperature conditions at various parts of the data center cooling infrastructure. For a case study example considered, the chiller energy use was the biggest fraction of about 41% and also the most inefficient. The room air conditioning was the second largest energy component and also the second most inefficient. A sensitivity analysis of plant and chiller energy efficiency with chiller set point temperature and outdoor air conditions is also presented.


Buildings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 190
Author(s):  
Irina Susorova ◽  
Brent Stephens ◽  
Benjamin Skelton

A common envelope performance problem in buildings is thermal bridging through balcony slab connections, which can be improved with the use of commercially available thermal break products. Several prior studies have used simulation-based and/or hot box test apparatus approaches to quantify the likely effect of balcony thermal breaks on effective thermal resistance of building enclosures. However, in-situ measurements of thermal performance in real buildings remain limited to date. This study uses a combination of field measurements and models to investigate the effects of installing balcony thermal breaks on the interior surface temperatures, effective thermal resistance, and annual building energy consumption. For the field experiment, yearlong measurements were conducted on the 13th floor of a 14-story multi-family building in Chicago, IL, in which thermocouple sensors were embedded into eight balconies and their adjacent interior floor slabs just before concrete was poured to complete the construction. The eight balconies included four control balconies without thermal breaks and four thermally-broken balconies with a commercially available thermal break product installed. The experimental data were then combined with 2-D heat transfer modeling and whole building energy simulations to investigate the impacts of the thermal break product installation on the envelope thermal resistance and overall energy use in the case study building as well as in several more generic building designs with simpler geometries. The results demonstrate that although the balcony thermal breaks helped regulate interior slab temperatures and improved the effective thermal resistance of the curtain wall enclosure assembly by an estimated ~14% in the case study building, the predicted effect on annual energy consumption in all modeled building types was small (i.e., less than 2%). The results also highlight the importance of paying careful attention to envelope design details when using thermal break products and considering the use of thermal break products in combination with other energy efficiency strategies to achieve high performance enclosures.


2019 ◽  
Vol 887 ◽  
pp. 335-343
Author(s):  
Nazanin Moazzen ◽  
Mustafa Erkan Karaguler ◽  
Touraj Ashrafian

Energy efficiency has become a crucial part of human life, which has an adverse impact on the social and economic development of any country. In Turkey, it is a critical issue especially in the construction sector due to increase in the dependency on the fuel demands. The energy consumption, which is used during the life cycle of a building, is a huge amount affected by the energy demand for material and building construction, HVAC and lighting systems, maintenance, equipment, and demolition. In general, the Life Cycle Energy (LCE) needs of the building can be summarised as the operational and embodied energy together with the energy use for demolition and recycling processes.Besides, schools alone are responsible for about 15% of the total energy consumption of the commercial building sector. To reduce the energy use and CO2 emission, the operational and embodied energy of the buildings must be minimised. Overall, it seems that choosing proper architectural measures for the envelope and using low emitting material can be a logical step for reducing operational and embodied energy consumptions.This paper is concentrated on the operating and embodied energy consumptions resulting from the application of different architectural measures through the building envelope. It proposes an educational building with low CO2 emission and proper energy performance in Turkey. To illustrate the method of the approach, this contribution illustrates a case study, which was performed on a representative schoold building in Istanbul, Turkey. Energy used for HVAC and lighting in the operating phase and the energy used for the manufacture of the materials are the most significant parts of embodied energy in the LCE analyses. This case study building’s primary energy consumption was calculated with the help of dynamic simulation tools, EnergyPlus and DesignBuilder. Then, different architectural energy efficiency measures were applied to the envelope of the case study building. Then, the influence of proposed actions on LCE consumption and Life Cycle CO2 (LCCO2) emissions were assessed according to the Life Cycle Assessment (LCA) method.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Madhusudan Iyengar ◽  
Roger Schmidt

The increasingly ubiquitous nature of computer and internet usage in our society has driven advances in semiconductor technology, server packaging, and cluster level optimizations in the IT industry. Not surprisingly this has an impact on our societal infrastructure with respect to providing the requisite energy to fuel these power hungry machines. Cooling has been found to contribute about a third of the total data center energy consumption and is the focus of this study. In this paper we develop and present physics based models to allow the prediction of the energy consumption and heat transfer phenomenon in a data center. These models allow the estimation of the microprocessor junction and server inlet air temperatures for different flows and temperature conditions at various parts of the data center cooling infrastructure. For the case study example considered, the chiller energy use was the biggest fraction of about 41% and was also the most inefficient. The room air conditioning was the second largest energy component and was also the second most inefficient. A sensitivity analysis of plant and chiller energy efficiencies with chiller set point temperature and outdoor air conditions is also presented.


2021 ◽  
Author(s):  
◽  
Kanyinda Kabuya

Improving energy use in a commercial building has become the subject of great importance in organizations worldwide. Improving energy usage refers to the efforts to reduce energy consumption. Reducing energy consumption in commercial buildings can be accomplished through continuous supervision using appropriate managerial techniques. Commercial companies are required to use energy more efficiently and participate in energy improvement. This study seeks to improve electrical energy consumption in commercial buildings by Analysing the electrical data consumption and identifying the factors that contribute to high consumption using Six Sigma DMAIC (Define-Measure- Analyse-Improve-Control) problem solving methodology. A case study was used to validate the DMAIC framework. Two years of electrical consumption data of a case study done from January 2018 to December 2019 was collected and analysed. The study revealed an average increment in energy consumption of 3.9 %. The outcomes using statistical Pareto chart showed that the boiler is the highest significant energy user in the building with 38.3% due; followed by the kitchen with 24.2 %, followed by DB A and lifts with 20,1 % and the rest with 17.37 %. After the campaign of DMAIC, there was a reduction of 6 % in boiler consumption which was 2.3 % reduction of total consumption of the month for the building. Therefore, the study successfully demonstrates how Six Sigma DMAIC methodology can be applied to improve electrical consumption in a commercial building and reduce its related costs.


Author(s):  
Parmod Sharma ◽  
. Yadvika ◽  
Kanishk Verma ◽  
Y. K. Yadav ◽  
. Ravi

A study was conducted to find out electrical and manual energy use pattern in post harvest rice processing operation in modern rice Plant at Hisar district of Haryana. Planting capacity of rice Plant is 200 tons per day and Plant operated 20 hours in one day. The processing operation adopted in modern rice Plant viz, parboiling, drying, polishing & dehusking, sorting & grading and packaging. In processing of rice, modern rice Plant utilized total electrical and manual energy were 64965.5 and 987.84 MJ/day. It was found that the electrical energy consumption of Plant in parboiling 10010.88, drying 16663.80, polishing & dehusking 22936.32, sorting & grading 14445.09 and packaging 1054.18 MJ/day were required. Operation wise manual energy used during the parboiling & drying 235.2, polishing & dehusking 188.16, sorting & grading 94.08 and packaging 470.40 MJ/day.


Sign in / Sign up

Export Citation Format

Share Document