Structural Analysis

This chapter develops the components required for successful modelling of temporary structures. It presents the principles, methods and the associated limitations that currently are seen as the state-of-the-art in structural analysis using the Finite Element Method. Material models of steel, aluminium and bamboo are presented with an emphasis on linear and multilinear models for steel and the Ramberg-Osgood model for aluminium. Models are presented for braces, props, beam-to-column connections, top connections, base connections and column-to-column connections based on the latest theoretical and experimental procedures developed by the authors and co-workers. Examples of two and three dimensional models are then developed for access scaffolds, bridge falsework and bamboo scaffolds. Finally, the chapter presents information on the effects of ground modelling and on advanced wind engineering using complex numerical methods.

2003 ◽  
Vol 125 (3) ◽  
pp. 527-532 ◽  
Author(s):  
J. W. Hobbs ◽  
R. L. Burguete ◽  
E. A. Patterson

By means of comparing results from finite element analysis and photoelasticity, the salient characteristics of a finite element model of a nut and bolt have been established. A number of two-dimensional and three-dimensional models were created with varying levels of complexity, and the results were compared with photoelastic results. It was found that both two-dimensional and three-dimensional models could produce accurate results provided the nut thread run-out and friction were modeled accurately. When using two-dimensional models, a number of models representing different positions around the helix of the thread were created to obtain more data for the stress distribution. This approach was found to work well and to be economical.


Author(s):  
Sergey Sivak ◽  
Mihail Royak ◽  
Ilya Stupakov ◽  
Aleksandr Aleksashin ◽  
Ekaterina Voznjuk

Introduction: To solve the Helmholtz equation is important for the branches of engineering that require the simulation of wave phenomenon. Numerical methods allow effectiveness’ enhancing of the related computations. Methods: To find a numerical solution of the Helmholtz equation one may apply the boundary element method. Only the surface mesh constructed for the boundary of the three-dimensional domain of interest must be supplied to make the computations possible. This method’s trait makes it possible toconduct numerical experiments in the regions which are external in relation to some Euclidian three-dimensional subdomain bounded in the three-dimensional space. The later also provides the opportunity of not using additional geometric techniques to consider the infinitely distant boundary. However, it’s only possible to use the boundary element methods either for the homogeneous domains or for the domains composed out of adjacent homogeneous subdomains. Results: The implementation of the boundary elementmethod was committed in the program complex named Quasar. The discrepancy between the analytic solution approximation and the numerical results computed through the boundary element method for internal and external boundary value problems was analyzed. The results computed via the finite element method for the model boundary value problems are also provided for the purpose of the comparative analysis done between these two approaches. Practical relevance: The method gives an opportunityto solve the Helmholtz equation in an unbounded region which is a significant advantage over the numerical methods requiring the volume discretization of computational domains in general and over the finite element method in particular. Discussion: It is planned to make a coupling of the two methods for the purpose of providing the opportunity to conduct the computations in the complex regions with unbounded homogeneous subdomain and subdomains with substantial inhomogeneity inside.


2020 ◽  
Vol 46 (3) ◽  
pp. 175-181
Author(s):  
Marcelo Bighetti Toniollo ◽  
Mikaelly dos Santos Sá ◽  
Fernanda Pereira Silva ◽  
Giselle Rodrigues Reis ◽  
Ana Paula Macedo ◽  
...  

Rehabilitation with implant prostheses in posterior areas requires the maximum number of possible implants due to the greater masticatory load of the region. However, the necessary minimum requirements are not always present in full. This project analyzed the minimum principal stresses (TMiP, representative of the compressive stress) to the friable structures, specifically the vestibular face of the cortical bone and the vestibular and internal/lingual face of the medullary bone. The experimental groups were as follows: the regular splinted group (GR), with a conventional infrastructure on 3 regular-length Morse taper implants (4 × 11 mm); and the regular pontic group (GP), with a pontic infrastructure on 2 regular-length Morse taper implants (4 × 11 mm). The results showed that the TMiP of the cortical and medullary bones were greater for the GP in regions surrounding the implants (especially in the cervical and apical areas of the same region) but they did not reach bone damage levels, at least under the loads applied in this study. It was concluded that greater stress observed in the GP demonstrates greater fragility with this modality of rehabilitation; this should draw the professional's attention to possible biomechanical implications. Whenever possible, professionals should give preference to use of a greater number of implants in the rehabilitation system, with a focus on preserving the supporting tissue with the generation of less intense stresses.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


2014 ◽  
Vol 644-650 ◽  
pp. 1551-1555
Author(s):  
Jian Ming Zhang ◽  
Yong He

This paper is concerned with the convergence of the h-p version of the finite element method for three dimensional Poisson problems with edge singularity on quasi-uniform meshes. First, we present the theoretical results for the convergence of the h-p version of the finite element method with quasi-uniform meshes for elliptic problems on polyhedral domains on smooth functions in the framework of Jacobi-weighted Sobolev spaces. Second, we investigate and analyze numerical results for three dimensional Poission problems with edge singularity. Finally, we verified the theoretical predictions by the numerical computation.


Sign in / Sign up

Export Citation Format

Share Document