Carbon Capture From Natural Gas via Polymeric Membranes

Author(s):  
Nayef Mohamed Ghasem ◽  
Nihmiya Abdul Rahim ◽  
Mohamed Al-Marzouqi

Polymeric membrane is a promising energy effective and an active alternative for conventional CO2 absorption column. The type of absorption liquid and operating parameters plays an efficient role in the ultimate absorption/stripping performance using gas-liquid membrane contactor. The gas flow rate has a significant effect on CO2 absorption performance, by contrast, it has no effect on stripping performance. Further the CO2 absorption performance in membrane contactor could be enhanced by high liquid flow rates. Because the gas–liquid contact time was a key factor to enhance the stripping flux at low temperature while liquid phase boundary layer thickness and associated mass transfer resistance is important at elevated temperature. So by controlling the liquid phase velocity and the length of module at low temperature better stripping performance can be achieved. The effect of liquid temperature on absorption performance in gas-liquid is not straightforward, since the liquid temperature cooperatively influence several factors.

Author(s):  
Nayef Mohamed Ghasem ◽  
Nihmiya Abdul Rahim ◽  
Mohamed Al-Marzouqi

Polymeric membrane is a promising energy and an active alternative for conventional CO2 absorption column. The type of absorption liquid and operating parameters plays an efficient role in the ultimate absorption/stripping performance using gas-liquid membrane contactor. The gas flow rate has a significant effect on CO2 absorption performance; by contrast, it has no effect on stripping performance. Further, the CO2 absorption performance in membrane contactor could be enhanced by high liquid flow rates. The gas-liquid contact time was a key factor in enhancing the stripping flux at low temperature while liquid phase boundary layer thickness and associated mass transfer resistance is important at elevated temperature. By controlling the liquid phase velocity and the length of module at low temperature, better stripping performance can be achieved. The effect of liquid temperature on absorption performance in gas-liquid is not straightforward, since the liquid temperature cooperatively influences several factors.


2014 ◽  
Vol 881-883 ◽  
pp. 645-648
Author(s):  
Mei Jin ◽  
Li Yan Zhou ◽  
Ping Lu ◽  
Jin Huang Wang ◽  
Guo Xian Yu

The absorption performance of CO2 using MDEA-PZ-TETA ternary absorbent in a rotating packed bed was investigated. The effects of the concentration of the ternary absorbent, the absorbing liquid temperature, the rotating speed, the liquid flow rate and gas flow rate on the absorption performance of CO2 were discussed in detail. The experimental results showed that the optimum absorption condition was the absorbent concentration of 0.05 mol/L, the absorption temperature of 290 K, the rotating speed of 454 rpm and the ratio of gas to liquid of 1.2, which could provide a molar absorption saturated capacity of 1.3688 molCO2/molAm and a satisfying CO2 absorptivity of 93.18%.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Georgia Kontaxi ◽  
Yorgos G. Stergiou ◽  
Aikaterini A. Mouza

Over the last few years, microbubbles have found application in biomedicine. In this study, the characteristics of bubbles formed when air is introduced from a micro-tube (internal diameter 110 μm) in non-Newtonian shear thinning fluids are studied. The dependence of the release time and the size of the bubbles on the gas phase rate and liquid phase properties is investigated. The geometrical characteristics of the bubbles are also compared with those formed in Newtonian fluids with similar physical properties. It was found that the final diameter of the bubbles increases by increasing the gas flow rate and the liquid phase viscosity. It was observed that the bubbles formed in a non-Newtonian fluid have practically the same characteristics as those formed in a Newtonian fluid, whose viscosity equals the asymptotic viscosity of the non-Newtonian fluid, leading to the assumption that the shear rate around an under-formation bubble is high, and the viscosity tends to its asymptotic value. To verify this notion, bubble formation was simulated using Computational Fluid Dynamics (CFD). The simulation results revealed that around an under-formation bubble, the shear rate attains a value high enough to lead the viscosity of the non-Newtonian fluid to its asymptotic value.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 641
Author(s):  
Lukasz Wolski ◽  
Grzegorz Nowaczyk ◽  
Stefan Jurga ◽  
Maria Ziolek

The aim of the study was to establish the influence of a co-precipitation agent (i.e., NaOH–immediate precipitation; hexamethylenetetramine/urea–gradual precipitation and growth of nanostructures) on the properties and catalytic activity of as-synthesized Au-CeO2 nanocomposites. All catalysts were fully characterized with the use of XRD, nitrogen physisorption, ICP-OES, SEM, HR-TEM, UV-vis, XPS, and tested in low-temperature oxidation of benzyl alcohol as a model oxidation reaction. The results obtained in this study indicated that the type of co-precipitation agent has a significant impact on the growth of gold species. Immediate co-precipitation of Au-CeO2 nanostructures with the use of NaOH allowed obtainment of considerably smaller and more homogeneous in size gold nanoparticles than those formed by gradual co-precipitation and growth of Au-CeO2 nanostructures in the presence of hexamethylenetetramine or urea. In the catalytic tests, it was established that the key factor promoting high activity in low-temperature oxidation of benzyl alcohol was size of gold nanoparticles. The highest conversion of the alcohol was observed for the catalyst containing the smallest Au particle size (i.e., Au-CeO2 nanocomposite prepared with the use of NaOH as a co-precipitation agent).


Sign in / Sign up

Export Citation Format

Share Document