Bio-Inspired Snake Robots

Author(s):  
Mohammadali Javaheri Koopaee ◽  
Cid Gilani ◽  
Callum Scott ◽  
XiaoQi Chen

This chapter concerns modelling and control of snake robots. Specifically, the authors' main goal is introducing some of the fundamental design, modelling, and control approaches introduced for efficient snake robot locomotion in cluttered environments. This is a critical topic because, unlike locomotion in flat surfaces, where pre-specified gait equations can be employed, for locomotion in unstructured environment more sophisticated control approaches should be used to achieve intelligent and efficient mobility. To reach this goal, shape-based modelling approaches and a number of available control schemes for operation in unknown environments are presented, which hopefully motivates more scholars to start working on snake robots. Some ideas about future research plans are also proposed, which can be helpful for fabricating a snake robot equipped with the necessary features for operation in a real-world environment.

2021 ◽  
Author(s):  
Nhan Trung Tran

Snake-like robots are low centre of gravity because they are limbless, they also have slender bodies composed of multiple actuating segments. Because of these features, snake robots are widely considered to be most adaptable among all land-based mobile robots. The multi-segmented body that provides their defining characteristic, adaptivity, also brings about the quandary of controlling many actuating segments simultaneously to create directd locomotion. Various methods for snake robot locomotion have been proposed for relatively smooth and flat surfaces. Currently there is no snake robot designed or locomotion method capable of resolving the directed mobility problem in situations where the snake robot is stuck at an impasse, or when it encounters disjointed terrains. There is no method to rapidly create new locomotion that addresses the problem or extensive time delay. This thesis makes the contribution of a modular snake robot called Striker and an elegant solution to create new snake-like robot locomotion on-the-fly, called the Explicit Gait Training (EGT) method. The EGT method allows trainer(s) to rapidly train new kinds of locomotion to address any situation at hand using their knowledge, experiences or even trial and error. The third contribution is the Standard Mobility for Snake Robots (SMMSR) is proposed as a standard platform to evaluate the evvectiveness of snake robot locomotion.


2021 ◽  
Author(s):  
Nhan Trung Tran

Snake-like robots are low centre of gravity because they are limbless, they also have slender bodies composed of multiple actuating segments. Because of these features, snake robots are widely considered to be most adaptable among all land-based mobile robots. The multi-segmented body that provides their defining characteristic, adaptivity, also brings about the quandary of controlling many actuating segments simultaneously to create directd locomotion. Various methods for snake robot locomotion have been proposed for relatively smooth and flat surfaces. Currently there is no snake robot designed or locomotion method capable of resolving the directed mobility problem in situations where the snake robot is stuck at an impasse, or when it encounters disjointed terrains. There is no method to rapidly create new locomotion that addresses the problem or extensive time delay. This thesis makes the contribution of a modular snake robot called Striker and an elegant solution to create new snake-like robot locomotion on-the-fly, called the Explicit Gait Training (EGT) method. The EGT method allows trainer(s) to rapidly train new kinds of locomotion to address any situation at hand using their knowledge, experiences or even trial and error. The third contribution is the Standard Mobility for Snake Robots (SMMSR) is proposed as a standard platform to evaluate the evvectiveness of snake robot locomotion.


2020 ◽  
Vol 60 (1) ◽  
pp. 171-179
Author(s):  
Qiyuan Fu ◽  
Sean W Gart ◽  
Thomas W Mitchel ◽  
Jin Seob Kim ◽  
Gregory S Chirikjian ◽  
...  

Abstract Snakes can move through almost any terrain. Similarly, snake robots hold the promise as a versatile platform to traverse complex environments such as earthquake rubble. Unlike snake locomotion on flat surfaces which is inherently stable, when snakes traverse complex terrain by deforming their body out of plane, it becomes challenging to maintain stability. Here, we review our recent progress in understanding how snakes and snake robots traverse large, smooth obstacles such as boulders and felled trees that lack “anchor points” for gripping or bracing. First, we discovered that the generalist variable kingsnake combines lateral oscillation and cantilevering. Regardless of step height and surface friction, the overall gait is preserved. Next, to quantify static stability of the snake, we developed a method to interpolate continuous body in three dimensions (3D) (both position and orientation) between discrete tracked markers. By analyzing the base of support using the interpolated continuous body 3-D kinematics, we discovered that the snake maintained perfect stability during traversal, even on the most challenging low friction, high step. Finally, we applied this gait to a snake robot and systematically tested its performance traversing large steps with variable heights to further understand stability principles. The robot rapidly and stably traversed steps nearly as high as a third of its body length. As step height increased, the robot rolled more frequently to the extent of flipping over, reducing traversal probability. The absence of such failure in the snake with a compliant body inspired us to add body compliance to the robot. With better surface contact, the compliant body robot suffered less roll instability and traversed high steps at higher probability, without sacrificing traversal speed. Our robot traversed large step-like obstacles more rapidly than most previous snake robots, approaching that of the animal. The combination of lateral oscillation and body compliance to form a large, reliable base of support may be useful for snakes and snake robots to traverse diverse 3-D environments with large, smooth obstacles.


2010 ◽  
Vol 26 (5) ◽  
pp. 781-799 ◽  
Author(s):  
Pål Liljeback ◽  
Kristin Y. Pettersen ◽  
Øyvind Stavdahl ◽  
Jan Tommy Gravdahl

Author(s):  
Mahdi Haghshenas-Jaryani ◽  
Hakki Erhan Sevil ◽  
Liang Sun

Abstract This paper presents the concept of teaming up snake-robots, as unmanned ground vehicles (UGVs), and unmanned aerial vehicles (UAVs) for autonomous navigation and obstacle avoidance. Snake robots navigate in cluttered environments based on visual servoing of a co-robot UAV. It is assumed that snake-robots do not have any means to map the surrounding environment, detect obstacles, or self-localize, and these tasks are allocated to the UAV, which uses visual sensors to track the UGVs. The obtained images were used for the geo-localization and mapping the environment. Computer vision methods were utilized for the detection of obstacles, finding obstacle clusters, and then, mapping based on Probabilistic Threat Exposure Map (PTEM) construction. A path planner module determines the heading direction and velocity of the snake robot. A combined heading-velocity controller was used for the snake robot to follow the desired trajectories using the lateral undulatory gait. A series of simulations were carried out for analyzing the snake-robot’s maneuverability and proof-of-concept by navigating the snake robot in an environment with two obstacles based on the UAV visual servoing. The results showed the feasibility of the concept and effectiveness of the integrated system for navigation.


Author(s):  
Pål Liljebäck ◽  
Kristin Y. Pettersen ◽  
Øyvind Stavdahl ◽  
Jan Tommy Gravdahl

2014 ◽  
Vol 592-594 ◽  
pp. 2272-2276 ◽  
Author(s):  
V.S. Rajashekhar ◽  
K. Thiruppathi ◽  
R. Senthil

Snake robots have high degrees of freedom and can move on any kind of environment by suitably adjusting itself. In order to serve this purpose, a snake robot with two sets of three revolute joint mechanism was developed to exhibit concertina motion. There are rotating disks at the end of the segments which enables side winding motion. By the combination of these two motions, the snake robot can traverse on flat surfaces and even on slopes. The snake robot was first drafted and then modeled. Then the mechanism was simulated and stress analysis was done for it. Finally the design was implemented and the snake robot was made in reality.


Author(s):  
Pål Liljebäck ◽  
Kristin Y. Pettersen ◽  
Øyvind Stavdahl ◽  
Jan Tommy Gravdahl

2020 ◽  
Vol 7 (2) ◽  
pp. 191192 ◽  
Author(s):  
Qiyuan Fu ◽  
Chen Li

Snakes can move through almost any terrain. Although their locomotion on flat surfaces using planar gaits is inherently stable, when snakes deform their body out of plane to traverse complex terrain, maintaining stability becomes a challenge. On trees and desert dunes, snakes grip branches or brace against depressed sand for stability. However, how they stably surmount obstacles like boulders too large and smooth to gain such ‘anchor points’ is less understood. Similarly, snake robots are challenged to stably traverse large, smooth obstacles for search and rescue and building inspection. Our recent study discovered that snakes combine body lateral undulation and cantilevering to stably traverse large steps. Here, we developed a snake robot with this gait and snake-like anisotropic friction and used it as a physical model to understand stability principles. The robot traversed steps as high as a third of its body length rapidly and stably. However, on higher steps, it was more likely to fail due to more frequent rolling and flipping over, which was absent in the snake with a compliant body. Adding body compliance reduced the robot's roll instability by statistically improving surface contact, without reducing speed. Besides advancing understanding of snake locomotion, our robot achieved high traversal speed surpassing most previous snake robots and approaching snakes, while maintaining high traversal probability.


Sign in / Sign up

Export Citation Format

Share Document