Solar Radiation Intensity Data as Basis for Predicting Functioning Modes of Solar Power Plants

Author(s):  
Yuliia Daus ◽  
Valeriy Kharchenko ◽  
Igor Viktorovich Yudaev

The chapter presents express methods for estimating the solar energy potential at a given point on the basis of combining the solar radiation daily profile application method under clear skies and actinometrical data of the NASA electronic base. Such a new approach including the climatological conditions of the region, significantly reduces the calculation time, and improves the accuracy of the decisions with a minimum of initial data. For the speed and convenience of calculations based on the proposed methodology, it was implemented in the form of a computer program. The article also analyzes the influence of spatial orientation on the maximum electricity produced during the month, season and year and it reveals that the use of an optimal inclination angle for the specified periods of time makes it possible to realize the existing solar potential of the region at the same capital expenditures.

Author(s):  
Mihailo Mitković ◽  
Jelena Đekić ◽  
Petar Mitković ◽  
Milica Igić

The solar radiation and energy potential in Serbia is 30% higher than in Central Europe, and the intensity of solar radiation is among the highest in Europe. Specifically suitable are the condition for usage of solar energy in southeast Serbia where the annual average of global radiation on a horizontal surface amounts to more than 4.2 kWh/m2 a day. This chapter discusses four photovoltaic solar power plants, two having been installed in the territory of the city of Leskovac and two in the Bosilegrad territory. The research is based on geographical location of solar power plants, orientation, and inclination of the panels in respect to the horizontal surface. All the processed solar power plants have the capacity 30-40 kW. The chapter is projection of two years of researching and measuring data on the initial investments in order reach profitability and investment return period. The solar power plants that have fitted angle of 33° (Fortuna) give higher production of electric power than in those panels that have angle inclination of 10° (Domit).


Author(s):  
Mihailo Mitković ◽  
Jelena Đekić ◽  
Petar Mitković ◽  
Milica Igić

The solar radiation and energy potential in Serbia is 30% higher than in Central Europe, and the intensity of solar radiation is among the highest in Europe. Specifically suitable are the condition for usage of solar energy in southeast Serbia where the annual average of global radiation on a horizontal surface amounts to more than 4.2 kWh/m2 a day. This chapter discusses four photovoltaic solar power plants, two having been installed in the territory of the city of Leskovac and two in the Bosilegrad territory. The research is based on geographical location of solar power plants, orientation, and inclination of the panels in respect to the horizontal surface. All the processed solar power plants have the capacity 30-40 kW. The chapter is projection of two years of researching and measuring data on the initial investments in order reach profitability and investment return period. The solar power plants that have fitted angle of 33° (Fortuna) give higher production of electric power than in those panels that have angle inclination of 10° (Domit).


2020 ◽  
Vol 30 (3) ◽  
pp. 480-497
Author(s):  
Dmitriy S. Strebkov ◽  
Yuriy Kh. Shogenov ◽  
Nikolay Yu. Bobovnikov

Introduction. An urgent scientific problem is to increase the efficiency of using solar energy in solar power plants (SES). The purpose of the article is to study methods for increasing the efficiency of solar power plants. Materials and Methods. Solar power plants based on modules with a two-sided working surface are considered. Most modern solar power plants use solar modules. The reflection of solar radiation from the earth’s surface provides an increase in the production of electrical energy by 20% compared with modules with a working surface on one side. It is possible to increase the efficiency of using solar energy by increasing the annual production of electric energy through the creation of equal conditions for the use of solar energy by the front and back surfaces of bilateral solar modules. Results. The article presents a solar power plant on a horizontal surface with a vertical arrangement of bilateral solar modules, a solar power station with a deviation of bilateral solar modules from a vertical position, and a solar power plant on the southern slope of the hill with an angle β of the slope to the horizon. The formulas for calculating the sizes of the solar energy reflectors in the meridian direction, the width of the solar energy reflectors, and the angle of inclination of the solar modules to the horizontal surface are given. The results of computer simulation of the parameters of a solar power plant operating in the vicinity of Luxor (Egypt) are presented. Discussion and Conclusion. It is shown that the power generation within the power range of 1 kW takes a peak value for vertically oriented two-sided solar modules with horizontal reflectors of sunlight at the installed capacity utilization factor of 0.45. At the same time, when the solar radiation becomes parallel to the plane of vertical solar modules, there is a decrease in the output of electricity. The proposed design allows equalizing and increasing the output of electricity during the maximum period of solar radiation. Vertically oriented modules are reliable and easy to use while saving space between modules.


Kilat ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 115-124
Author(s):  
Tri Joko Pramono ◽  
Erlina Erlina ◽  
Zainal Arifin ◽  
Jef Saragih

Solar Power Plant is one of the New Renewable Energy power plants. Solar panels can produce unlimited amounts of electrical energy directly taken from the sun, with no rotating parts and no fuel. In this study are optimize solar power plants using hybrid systems with electricity companies and the use of semi-transparent solar panels in high rise buildings to meet the burden of the building. The research will discussed about use of solar power plants using semi-transparent solar panels in multi-storey buildings. The solar panel used for the facade is a semi-transparent solar panel makes its function become two, that is to produce electrical energy as well as glass through which sunlight and can see the view outside the building without reducing the building's aesthetic value. In this study is the value of solar radiation taken from west is the lowest value in November 1.4 Kwh can produce energy PLTS 3,855 Kwh and the highest solar radiation in July amounted to 3.75 Kwh can produce energy PLTS 10.331 Kwh. From the utilization of this PLTS system, Performance Ratio of 85% was obtained using study of 36 panels on the 3rd to 5th floors, this system can be said to feasible.  


The following article deals with a new approach of incorporating risk profile of a solar power project into the Capital Budgeting process. As revealed in the literature review, the current capital budgeting practices being followed in the industry suffers from practice of non sophisticated methods of risk assessment. These include sensitivity and scenario analyses only.


2019 ◽  
Vol 11 (1) ◽  
pp. 79-82
Author(s):  
Parmeshwar Kumawat ◽  
Sushila ◽  
Mahesh Chand Sharma

2020 ◽  
Vol 209 ◽  
pp. 05004
Author(s):  
Irina Ivanova ◽  
Vladislav Shakirov

The problem of power supply to remote consumers in the “Baikal-Khövsgöl” Cross-Border Recreation Area, associated with the high length and low reliability of power lines is discussed. The assessment of the modes of the power distribution grid showed that the introduction of new consumers in this territory will lead to unacceptable voltage deviations, even taking into account the installation of reactive power compensating devices. Since the area under consideration has a high solar energy potential, it is advisable to use distributed solar generation. The choice of locations and capacities of solar power plants is a multi-criteria optimization problem. Four criteria are proposed: total voltage deviation, total active power losses, reliability and capital costs for construction. An algorithm for multi-criteria optimizationis developed and implemented as a program in the MATLAB, which consists in sequential verification of the feasibility of installing additional power of solar power plants at the consumers of each of the substations under consideration. For each variant, the electric grid mode is assessed using the Power system analysis toolbox program. Solutions for the choice of locations and capacities of solar power plants are obtained, providing high scores by criteria in accordance with the given criteria importance coefficients.


2019 ◽  
Vol 55 (2) ◽  
pp. 101-105 ◽  
Author(s):  
Yu. V. Daus ◽  
K. A. Pavlov ◽  
I. V. Yudaev ◽  
V. V. Dyachenko

Sign in / Sign up

Export Citation Format

Share Document