Active Control for Multi-Switching Combination Synchronization of Non-Identical Chaotic Systems

Author(s):  
Shikha Singh ◽  
Ahmad Taher Azar ◽  
Muzaffar Ahmad Bhat ◽  
Sundarapandian Vaidyanathan ◽  
Adel Ouannas

This chapter investigates the multi-switching combination synchronization of three non-identical chaotic systems via active control technique. In recent years, some advances have been made with the idea of multi-switching combination synchronization. The different states of the master systems are synchronized with the desired state of the slave system in multi-switching combination synchronization scheme. The relevance of such kinds of synchronization studies to information security is evident in the wide range of possible synchronization directions that exist due to multi-switching synchronization. Numerical simulations justify the validity of the theoretical results discussed.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Li-xin Yang ◽  
Wan-sheng He

This paper investigates the adaptive - synchronization of the fractional-order chaotic systems with nonidentical structures. Based on the stability of fractional-order systems and adaptive control technique, a general formula for designing the controller and parameters update law is proposed to achieve adaptive - synchronization between two different chaotic systems with different structures. The effective scheme parameters identification and - synchronization of chaotic systems can be realized simultaneously. Furthermore, two typical illustrative numerical simulations are given to demonstrate the effectiveness of the proposed scheme, for each case, we design the controller and parameter update laws in detail. The numerical simulations are performed to verify the effectiveness of the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jianeng Tang

Chaos synchronization of different fractional order time-delay chaotic systems is considered. Based on the Laplace transform theory, the conditions for achieving synchronization of different fractional order time-delay chaotic systems are analyzed by use of active control technique. Then numerical simulations are provided to verify the effectiveness and feasibility of the developed method. At last, effects of the fraction order and the time delay on synchronization are further researched.


2013 ◽  
Vol 805-806 ◽  
pp. 1975-1978
Author(s):  
Jia Neng Tang

In this paper, based on the Laplace transform theory, the conditions for achieving synchronization of different fractional order time-delay chaotic systems are analyzed by use of active control technique. Then numerical simulations are provided to verify the effectiveness and feasibility of the developed method.


2014 ◽  
Vol 92 (12) ◽  
pp. 1688-1695 ◽  
Author(s):  
R. Rakkiyappan ◽  
R. Sivasamy ◽  
Ju H. Park

In this article, synchronization of two different fractional-order memristor-based chaotic systems is considered. To achieve synchronization, an active control technique is used. The main proof is concerned with the problem of synchronization of memristor-based Lorenz systems with memristor-based Chua’s circuits. Numerical simulations of fractional-order memristor-based chaotic systems are performed by using the Caputo version and a predictor–corrector algorithm for fractional-order differential equations, which is a generalization of the Adams–Bashforth–Moulton method. From the simulations, it will be verified that the proposed control method is effective in achieving synchronization.


2020 ◽  
Vol 12 (2) ◽  
pp. 183-188 ◽  
Author(s):  
P. Trikha ◽  
Nasreen ◽  
L. S. Jahanzaib

This manuscript investigates the combination difference synchronization between identical Generalised Lotka-Volterra Chaotic Systems. Numerical Simulations have been performed which are in complete agreement of theoretical results.


2007 ◽  
Vol 18 (05) ◽  
pp. 795-804 ◽  
Author(s):  
AHMED A. M. FARGHALY

In a recent paper [Chaos, Solitons Fractals21, 915 (2004)], both real and complex Van der Pol oscillators were introduced and shown to exhibit chaotic limit cycles. In the present work these oscillators are synchronized by applying an active control technique. Based on Lyapunov function, the control input vectors are chosen and activated to achieve synchronization. The feasibility and effectiveness of the proposed technique are verified through numerical simulations.


2020 ◽  
Vol 12 (2) ◽  
pp. 175-181 ◽  
Author(s):  
A. Khan ◽  
L. S. Jahanzaib ◽  
Nasreen ◽  
P. Trikha ◽  
T. Khan

In this article, the compound difference anti-synchronization between fractional order hyper-chaotic systems have been studied. Numerical simulations have been performed using MATLAB to verify the theoretical results on fractional order Xling, Vanderpol, Rikitake and Rabinovich hyper-chaotic systems.


2015 ◽  
Vol 25 (4) ◽  
pp. 463-490 ◽  
Author(s):  
K. S. Ojo ◽  
A. N. Njah ◽  
O. I. Olusola

Abstract This paper proposes a new synchronization scheme called compound-combination synchronization. The scheme is investigated using six chaotic Josephson junctions evolving from different initial conditions based on the drive-response configuration via the active backstepping technique. The technique is applied to achieve compound-combination synchronization of: (i) six identical third order resistive-capacitive-inductive-shunted Josepshon junctions (RCLSJJs) (with three as drive and three as response systems); (ii) three third order RCLSJJs (as drive systems) and three second order resistive-capacitive-shunted Josepshon junctions (RCSJJs (as response systems). In each case, sufficient conditions for global asymptotic stability for compound-combination synchronization to any desired scaling factors are achieved. Numerical simulations are employed to verify the feasibility and effectiveness of the compound-combination synchronization scheme. The result shows that this scheme could be used to vary the junction signal to any desired level and also give a better insight into synchronization in biological systems wherein different organs of different dynamical structures and orders are involved. The scheme could also provide high security in information transmission due to the complexity of its dynamical formulation.


2016 ◽  
Vol 40 (4) ◽  
pp. 1177-1187 ◽  
Author(s):  
Hua Wang ◽  
Jian-Min Ye ◽  
Zhong–Hua Miao ◽  
Edmond A Jonckheere

This paper presents finite-time chaos synchronization of time-delay chaotic systems with uncertain parameters. According to the proposed method, a lot of coupled items can be treated as zero items. Thus, the whole system can be simplified greatly. Based on robust chaotic synchronization, secure communication can be realized with a wide range of parameter disturbance and time-delay. Numerical simulations are provided to illustrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document