Multicomponent Solid Forms

Author(s):  
Rahul B. Chavan ◽  
Balvant Yadav ◽  
Anurag Lodagekar ◽  
Nalini R. Shastri

Multicomponent systems provide the option of combining drugs at the supramolecular level. Among these, co-crystals have gained a widespread interest in pharmaceutical industry as US Food and Drug Administration (FDA) recently introduced new regulatory guidelines regarding this solid form that is anticipated to expand patent portfolios. Apart from co-crystals, other multi-component adducts such as co-amorphous system and eutectics are also a topic of interest for pharmaceutical researchers as they provide therapeutic advantages along with improved the aqueous solubility, dissolution, and bioavailability of poorly soluble drugs. This chapter provides a brief overview of multicomponent solid forms, their preparation methodologies, characterization, evaluation, biopharmaceutical aspects, scale up issues, and regulatory perspectives related to these solid forms. In addition, a section on future perspectives that sheds light on new therapeutic hybrids deploying drug-drug and drug-neutraceuticals combinations with improved pharmaceutical and biopharmaceutical attributes is also included.

2019 ◽  
Vol 31 (4) ◽  
pp. 751-759 ◽  
Author(s):  
Sabitri Bindhani ◽  
S. Mohapatra ◽  
R.K. Kar

In recent years, nearly 40 % newer drugs compounds are hydrophobic in nature, which is a major challenge now-a-days for oral drug delivering due to low aqueous solubility. Lipid based drug delivery system is one of the favourable approach for poorly soluble compounds which can improve the drug absorption and oral bioavailability. Due to ion-pairing with appropriate surfactant and co-surfactant the macromolecular drug molecular oil droplet being found in the gut flow oral absorption which sufficiently stable towards lipase. Due to the formation of emulsified drug in micron level, it can efficiently endow the oral bioavailability. Several comprehensive papers have been published in the literature illustration diverse type of lipid based formulation with recent advancements. This article is based on an exhaustive and updated review on newer technology which out line an explicit discussion on its formulations and industrial scale up.


2016 ◽  
Vol 2 (2) ◽  
pp. 91-95
Author(s):  
Neelima Rani T ◽  
Pavani A ◽  
Sobhita Rani P ◽  
Srilakshmi N

This study aims to formulate solid dispersions (SDs) of Simvastatin (SIM) to improve the aqueous solubility, dissolution rate and to facilitate faster onset of action. Simvastatin is a BCS class II drug having low solubility & therefore low oral bioavailability. In the present study, SDs of simvastatin different drug-carrier ratios were prepared by kneading method. The results showed that simvastatin solubility & dissolution rate enhanced with polymer SSG in the ratio 1:7 due to increase in wetting property or possibly may be due to change in crystallinity of the drug.


2019 ◽  
Vol 15 (6) ◽  
pp. 576-588 ◽  
Author(s):  
Beibei Yan ◽  
Yu Gu ◽  
Juan Zhao ◽  
Yangyang Liu ◽  
Lulu Wang ◽  
...  

: According to the drug discovery, approximately 40% of the new chemical entities show poor bioavailability due to their low aqueous solubility. In order to increase the solubility of the drugs, self-micro emulsifying drug delivery systems (SMEDDS) are considered as an ideal technology for enhancing the permeability of poorly soluble drugs in GI membranes. The SMEDDS are also generally used to enhance the oral bioavailability of the hydrophobic drugs. At present, most of the self-microemulsion drugs are liquid dosage forms, which could cause some disadvantages, such as the low bioavailability of the traditional liquid SMEDDS. Therefore, solid self-micro emulsifying drug delivery systems (S-SMEDDS) have emerged widely in recent years, which were prepared by solidifying a semi-solid or liquid self-emulsifying (SE) ingredient into a powder in order to improve stability, treatment and patient compliance. The article gives a comprehensive introduction of the study of SMEDDS which could effectively tackle the problem of the water-insoluble drug, especially the development of solidification technology of SMEDDS. Finally, the present challenges and the prospects in this field were also discussed.


Author(s):  
Mohsen Hedaya ◽  
Farzana Bandarkar ◽  
Aly Nada

Introduction: The objectives were to prepare, characterize and in vivo evaluate different ibuprofen (IBU) nanosuspensions prepared by ultra-homogenization, after oral administration to rabbits. Methods: The nanosuspensions produced by ultra-homogenization were tested and compared with a marketed IBU suspension for particle size, in vitro dissolution and in vivo absorption. Five groups of rabbits received orally 25 mg/kg of IBU nanosuspension, nanoparticles, unhomogenized suspension, marketed product and untreated suspension. A sixth group received 5 mg/kg IBU intravenously. Serial blood samples were obtained after IBU administration. Results: The formulated nanosuspensions showed significant decrease in particle size. Polyvinyl Pyrrolidone K30 (PP) was found to improve IBU aqueous solubility much better than the other tested polymers. Addition of Tween 80 (TW), in equal amount as PP (IBU: PP:TW, 1:2:2 w/w) resulted in much smaller particle size and better dissolution rate. The Cmax achieved were 14.8±1.64, 11.1±1.37, 9.01±0.761, 7.03±1.38 and 3.23±1.03 μg/ml and the tmax were 36±8.2, 39±8.2, 100±17.3, 112±15 and 105±17 min for the nanosuspension, nanoparticle, unhomogenized suspension, marketed IBU suspension and untreated IBU suspension in water, respectively. Bioavailability of the different formulations relative to the marketed suspension were the highest for nanosuspension> unhomogenized suspension> nanoparticles> untreated IBU suspension. Conclusion: IBU/PP/TW nanosuspensions showed enhanced in vitro dissolution as well as faster rate and higher extent of absorption as indicated from the higher Cmax, shorter tmax and larger AUC. The in vivo data supported the in vitro results. Nanosuspensions prepared by ultra-high-pressure-homogenization technique can be used as a good formulation strategy to enhance the rate and extent of absorption of poorly soluble drugs.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 464
Author(s):  
Xingren Jiang ◽  
Ning Yang ◽  
Rijie Wang

Continuous manufacturing has received increasing interest because of the advantages of intrinsic safety and enhanced mass transfer in the pharmaceutical industry. However, the difficulty for scale-up has limited the application of continuous manufacturing for a long time. Recently, the tubular flow reactor equipped with the Kenics static mixer appears to be a solution for the continuous process scale-up. Although many influence factors on the mixing performance in the Kenics static mixer have been investigated, little research has been carried out on the aspect ratio. In this study, we used the coefficient of variation as the mixing evaluation index to investigate the effect of the aspect ratio (0.2–2) on the Kenics static mixer’s mixing performance. The results indicate that a low aspect ratio helps obtain a shorter mixing time and mixer length. This study suggests that adjusting the aspect ratio of the Kenics static mixer can be a new strategy for the scale-up of a continuous process in the pharmaceutical industry.


2004 ◽  
Vol 10 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Richard Storey ◽  
Robert Docherty ◽  
Paul Higginson ◽  
Chris Dallman ◽  
Chris Gilmore ◽  
...  

Chemosphere ◽  
2018 ◽  
Vol 208 ◽  
pp. 139-148 ◽  
Author(s):  
Pablo M. Fernández ◽  
Silvana C. Viñarta ◽  
Anahí R. Bernal ◽  
Elías L. Cruz ◽  
Lucía I.C. Figueroa

Author(s):  
Rabindranath Paul ◽  
Sandip Paul

One major problem in the pharmaceutical industry is the aqueous solubility of newly developed orally administered drug candidates. More than 50 % of the newly developed drug molecules suffer from...


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2323
Author(s):  
Olga Pelikh ◽  
Cornelia M. Keck

Many active pharmaceutical ingredients (API) possess poor aqueous solubility and thus lead to poor bioavailability upon oral administration and topical application. Nanocrystals have a well-established, universal formulation approach to overcome poor solubility. Various nanocrystal-based products have entered the market for oral application. However, their use in dermal formulations is relatively novel. Previous studies confirmed that nanocrystals are a superior formulation principle to improve the dermal penetration of poorly soluble API. Other studies showed that nanocrystals can also be used to target the hair follicles where they create a drug depot, enabling long acting drug therapy with only one application. Very recent studies show that also the vehicle in which the nanocrystals are incorporated can have a tremendous influence on the pathway of the API and the nanocrystals. In order to elucidate the influence of the excipient in more detail, a systematic study was conducted to investigate the influence of excipients on the penetration efficacy of the formulated API and the pathway of nanocrystals upon dermal application. Results showed that already small quantities of excipients can strongly affect the passive dermal penetration of curcumin and the hair follicle targeting of curcumin nanocrystals. The addition of 2% ethanol promoted hair follicle targeting of nanocrystals and hampered passive diffusion into the stratum corneum of the API, whereas the addition of glycerol hampered hair follicle targeting and promoted passive diffusion. Propylene glycol was found to promote both pathways. In fact, the study proved that formulating nanocrystals to improve the bioefficacy of poorly soluble API upon dermal application is highly effective. However, this is only true, if the correct excipient is selected for the formulation of the vehicle. The study also showed that excipients can be used to allow for a targeted dermal drug delivery, which enables to control if API should be delivered via passive diffusion and/or as drug reservoir by depositing API in the hair follicles.


Sign in / Sign up

Export Citation Format

Share Document