Optimal Location of TCSC, TCPS, and SVC Devices for Solving OPF and ORPD Problem Using Different Evolutionary Optimization Techniques

The secure operation of power system has become a topmost issue in today's largely complicated interconnected power systems. This chapter presents the implementation of grey wolf optimization (GWO), teaching-learning-based optimization (TLBO), biogeography-based optimization (BBO), krill herd algorithm (KHA), chemical reaction optimization (CRO), and hybrid CRO (HCRO) approaches to find the optimal location of various FACTS devices such as thyristor control series compensator (TCSC), thyristor control phase shifter (TCPS), and static VAR compensator (SVC) to solve optimal power flow (OPF) and optimal reactive power dispatch (ORPD) in power system. In this chapter, a standard IEEE 30-bus test system with multiple TCSC and TCPS and SVC devices are used for different single and multi-objective functions to validate the performance of the proposed methods. The simulation results validate the ability of the HCRO to produce better optimal solutions compared to GWO, TLBO, BBO, KHA, and CRO algorithms.

The introduction of flexible AC transmission system (FACTS) has added a new dimension in power system operation and planning. Various types of FACTS controllers such as static compensator (STATCOM), static synchronous series compensator (SSSC), thyristor control series compensator (TCSC), thyristor control phase shifter (TCPS), unified power flow controller (UPFC), etc. are successfully used by various researchers in order to get optimal performance of power system. In this chapter, the various population-based nature-inspired techniques such as grey wolf optimization (GWO), teaching-learning-based optimization (TLBO), biogeography-based optimization (BBO), krill herd algorithm (KHA), chemical reaction optimization (CRO), and hybrid CRO (HCRO) are used to find the optimal size of TCSC and TCPS devices in order to find the optimum performance of IEEE 30-bus power system. The simulation results of various cases demonstrate the effectiveness and robustness of the proposed techniques to solve TCSC-TCPS-based OPF and ORPD problems.


Author(s):  
Shraddha Udgir ◽  
Sarika Varshney ◽  
Laxmi Srivastava

In emerging electric power systems, increased transactions often lead to the situations where the system no longer remains in secure operating region. The flexible AC transmission system (FACTS) controllers can play a vital role in the power system security enhancement. However, due to high capital investment, it is necessary to place these controllers optimally in a power system. FACTS devices can regulate the active and reactive power control as well as adaptive to voltage-magnitude control simultaneously because of their flexibility and fast control characteristics. Placement of these devices at optimal location can lead to control in line flow and maintain bus voltages in desired level and so improve voltage profile and stability margins. This paper proposes a systematic method for finding optimal location of SVC to improve voltage profile of a power system. A contingency analysis to determine the critical outages with respect to voltage security is also examined in order to evaluate the effect of SVC on the location analysis. Effectiveness of the proposed method is demonstrated on IEEE 30-bus test system.


Author(s):  
Sana Khalid Abdul Hassan ◽  
Firas Mohammed Tuaimah

<p>Now-a-days the Flexible AC Transmission Systems (FACTS) technology is very effective in improving the power flow along the transmission lines and makes the power system more flexible and controllable. This paper deals with overload transmission system problems such as (increase the total losses, raise the rate of power generation, and the transmission line may be exposed to shut down when the load demand increase from the thermal limit of transmission line) and how can solve this problem by choosing the optimal location and parameters of Unified Power Flow Controllers (UPFCs). which was specified based on Genetic Algorithm (GA) optimization method, it was utilized to search for optimum FACT parameters setting and location based to achieve the following objectives: improve voltages profile, reduce power losses, treatment of power flow in overloaded transmission lines and reduce power generation. MATLAB was used for running both the GA program and Newton Raphson method for solving the load flow of the system The proposed approach is examined and tested on IEEE 30-bus system. The practical part has been solved through Power System Simulation for Engineers (PSS\E) software Version 32.0 (The Power System Simulator for Engineering (PSS/E) software created from Siemens PTI to provide a system of computer programs and structured data files designed to handle the basic functions of power system performance simulation work, such as power flow, optimal power flow, fault analysis, dynamic simulations...etc.). The Comparative results between the experimental and practical parts obtained from adopting the UPFC where too close and almost the same under different loading conditions, which are (5%, 10%, 15% and 20%) of the total load. can show that the total active power losses for the system reduce at 69.594% at normal case after add the UPFC device to the system. also the reactive power losses reduce by 75.483% at the same case as well as for the rest of the cases. in the other hand can noted the system will not have any overload lines after add UPFC to the system with suitable parameters.</p>


Optimum power flow is a useful tool for planning and operating the electrical system and maintains the economy and safety of the modern electrical system. Teaching, Learningbased Algorithm is one of the new Metaheuristic algorithms which can influence both teachers and students by expediting the interaction among them in sharing the necessary knowledge. The proposed TLBO is designed here to solve the problem of an optimum power flow with STATCOM FACTS device. The optimal location of STATCOM FACTS device on the weak bus is obtained by Analytical Hierarchy Process (AHP) method. The main objective of this study is to reduce fuel cost of generation, reduce active and reactive power loss, improve voltage deviation and enhance voltage stability index within the given control variable constraints. The proposed TLBO algorithm with STATCOM device is evaluated on the standard IEEE-57 bus system. From the simulation result, it shows that the Teaching Learning-based algorithm gives the optimal solution as compared to the recent algorithm mentioned in the literature with some IEEE-57 bus test system.


2018 ◽  
Vol 24 (3) ◽  
pp. 84
Author(s):  
Hassan Abdullah Kubba ◽  
Mounir Thamer Esmieel

Nowadays, the power plant is changing the power industry from a centralized and vertically integrated form into regional, competitive and functionally separate units. This is done with the future aims of increasing efficiency by better management and better employment of existing equipment and lower price of electricity to all types of customers while retaining a reliable system. This research is aimed to solve the optimal power flow (OPF) problem. The OPF is used to minimize the total generations fuel cost function. Optimal power flow may be single objective or multi objective function. In this thesis, an attempt is made to minimize the objective function with keeping the voltages magnitudes of all load buses, real output power of each generator bus and reactive power of each generator bus within their limits. The proposed method in this thesis is the Flexible Continuous Genetic Algorithm or in other words the Flexible Real-Coded Genetic Algorithm (RCGA) using the efficient GA's operators such as Rank Assignment (Weighted) Roulette Wheel Selection, Blending Method Recombination operator and Mutation Operator as well as Multi-Objective Minimization technique (MOM). This method has been tested and checked on the IEEE 30 buses test system and implemented on the 35-bus Super Iraqi National Grid (SING) system (400 KV). The results of OPF problem using IEEE 30 buses typical system has been compared with other researches.     


2018 ◽  
Vol 7 (1.8) ◽  
pp. 188
Author(s):  
M Dhana Sai Sri ◽  
P Srinivasa Varma

Reliability of network is need of the hour in the present power system market and is constrained by capability of the network. The network calculations are performed using accurate and high efficient strategies. In order to perform power transactions in the system, the computation of available transfer capability is essential which a metric of capability of the system. Generally, effect wattless power is not taken into account in the methodologies for computation of linear available transfer capability. In this paper, a methodology which considers the reactive power flows for enhancement of linear ATC is presented. In order to perform analysis theoretically, a standard IEEE 3 bus system is considered. Another case study i.e., 14 bus system available in IEEE test systems is used for simulation analysis. FACTS technology is incorporated in the existing system in order to enhance capability of the network. To facilitate transfer maximum power in the system, an optimal power-flow-based ATC enhancement model is formulated and presented along with simulation results. Studies based on the IEEE 3-bus system and 14-bus systems with TCSC demonstrate the effectiveness of FACTS control on ATC enhancement.  


Author(s):  
Anuj Singh ◽  
Dr. Sandeep Sharma ◽  
Karan Sharma ◽  
Flansha Jain ◽  
Shreyanshu Kumar Jena

A Power System is actually a vast system that requires an outstanding plan for maintaining the continual flow of electricity. When a fault occurs at the power system, number of difficulties arises because of transients in system. so to attenuate these transients, power electronics based devices like FACTS are utilized. A unified power flow controller (UPFC) is one among different power electronics controller which can dispense VAR compensation, line impedance control and phase shifting. The thought is to see potential of UPFC to require care of active and reactive power movement within the compensated line (including UPFC) and to shrink the falloff of the bus voltage in case of grounding fault within the cable. power system block consisting of simulink is used for numerical analysis. Simulation outcomes from MATLAB reflects major improvement in the overall system’s behaviour with UPFC in sustain the voltage and power flow even under severe line faults by proper injection of series voltage into the cable at the point of connection. outcomes shows how the UPFC contributes effectively to a faster regaining of the power system to the pre-fault conditions.


Author(s):  
Provas Kumar Roy ◽  
Susanta Dutta ◽  
Debashis Nandi

The chapter presents two effective evolutionary methods, namely, artificial bee colony optimization (ABC) and biogeography based optimization (BBO) for solving optimal reactive power dispatch (ORPD) problem using flexible AC transmission systems (FACTS) devices. The idea is to allocate two types of FACTS devices such as thyristor-controlled series capacitor (TCSC) and thyristor-controlled phase shifter (TCPS) in such a manner that the cost of operation is minimized. In this paper, IEEE 30-bus test system with multiple TCSC and TCPS devices is considered for investigations and the results clearly show that the proposed ABC and BBO methods are very competent in solving ORPD problem in comparison with other existing methods.


2020 ◽  
Vol 12 (2) ◽  
pp. 518
Author(s):  
Yue Chen ◽  
Zhizhong Guo ◽  
Hongbo Li ◽  
Yi Yang ◽  
Abebe Tilahun Tadie ◽  
...  

With the increasing proportion of uncertain power sources in the power grid; such as wind and solar power sources; the probabilistic optimal power flow (POPF) is more suitable for the steady state analysis (SSA) of power systems with high proportions of renewable power sources (PSHPRPSs). Moreover; PSHPRPSs have large uncertain power generation prediction error in day-ahead dispatching; which is accommodated by real-time dispatching and automatic generation control (AGC). In summary; this paper proposes a once-iterative probabilistic optimal power flow (OIPOPF) method for the SSA of day-ahead dispatching in PSHPRPSs. To verify the feasibility of the OIPOPF model and its solution algorithm; the OIPOPF was applied to a modified Institute of Electrical and Electronic Engineers (IEEE) 39-bus test system and modified IEEE 300-bus test system. Based on a comparison between the simulation results of the OIPOPF and AC power flow models; the OIPOPF model was found to ensure the accuracy of the power flow results and simplify the power flow model. The OIPOPF was solved using the point estimate method based on Gram–Charlier expansion; and the numerical characteristics of the line power were obtained. Compared with the simulation results of the Monte Carlo method; the point estimation method based on Gram–Charlier expansion can accurately solve the proposed OIPOPF model


2012 ◽  
Vol 3 (2) ◽  
pp. 147-156 ◽  
Author(s):  
R. A. El-Sehiemy ◽  
A. A. A. El Ela ◽  
A. M. M. Kinawy ◽  
M. T. Mouwafia

Abstract This paper presents optimal preventive control actions using ant colony optimization (ACO) algorithm to mitigate the occurrence of voltage collapse in stressed power systems. The proposed objective functions are: minimizing the transmission line losses as optimal reactive power dispatch (ORPD) problem, maximizing the preventive control actions by minimizing the voltage deviation of load buses with respect to the specified bus voltages and minimizing the reactive power generation at generation buses based on control variables under voltage collapse, control and dependent variable constraints using proposed sensitivity parameters of reactive power that dependent on a modification of Fast Decoupled Power Flow (FDPF) model. The proposed preventive actions are checked for different emergency conditions while all system constraints are kept within their permissible limits. The ACO algorithm has been applied to IEEE standard 30-bus test system. The results show the capability of the proposed ACO algorithm for preparing the maximal preventive control actions to remove different emergency effects.


Sign in / Sign up

Export Citation Format

Share Document