Particle Shape Analysis Using Digital Image Processing

Author(s):  
Katia Tannous ◽  
Fillipe de Souza Silva

This chapter will discuss new software, Particles and Geometric Shapes Analyzer (APOGEO), aiming the determination of aspect ratio and sphericity of solid particles by image processing technique without any manual work. This software can quantify the major and minor axes correlating two or three dimensions of particles (e.g., biomass, mineral, pharmaceutical, and food products) to obtain their shape. The particles can be associated with different geometries, such as rectangular parallelepiped, cylinder, oblate and prolate spheroids, and irregular. The results are presented in histograms and tables, but also can be saved in a spreadsheet.

Author(s):  
Katia Tannous ◽  
Fillipe de Souza Silva

This chapter will discuss new software, Particles and Geometric Shapes Analyzer (APOGEO), aiming the determination of aspect ratio and sphericity of solid particles by image processing technique without any manual work. This software can quantify the major and minor axes correlating two or three dimensions of particles (e.g.: biomass, mineral, pharmaceutical and food products) to obtain their shape. The particles can be associated with different geometries such as, rectangular parallelepiped, cylinder, oblate and prolate spheroids, and irregular. The results are presented in histograms and tables, but also can be saved in a spreadsheet.


2012 ◽  
Vol 19 (5) ◽  
pp. 1168-1174
Author(s):  
Li-Zhou ZHANG ◽  
Xiao-Yu HOU ◽  
Yu-Ming ZHANG ◽  
Hong-Jun LI ◽  
Yi-Song CHENG ◽  
...  

2010 ◽  
Vol 18 (6) ◽  
pp. 1340-1344
Author(s):  
Li-Zhou ZHANG ◽  
Dian-Wu WANG ◽  
Yu-Ming ZHANG ◽  
Yi-Song CHENG ◽  
Hong-Jun LI ◽  
...  

2007 ◽  
Vol 121-123 ◽  
pp. 1351-1354
Author(s):  
Yu Sheng Chien ◽  
Che Hsin Lin ◽  
Fu Jen Kao ◽  
Cheng Wen Ko

This paper proposes a novel microfluidic system for cell/microparticle recognition and manipulation utilizing digital image processing technique (DIP) and optical tweezer under microfluidic configuration. Digital image processing technique is used to count and recognize the cell/particle samples and then sends a control signal to generate a laser pulse to manipulate the target cell/particle optically. The optical tweezer system is capable of catching, moving and switching the target cells at the downstream of the microchannel. The trapping force of the optical tweezer is also demonstrated utilizing Stocks-drag method and electroosmotic flow. The proposed system provides a simple but high-performance solution for microparticle manipulation in a microfluidic device.


2020 ◽  
Vol 8 (5) ◽  
pp. 3026-3035

Manual examination is not as accurate to examine crop growing stages because of the possibility of the human mistake and errors. While machine examination or automatic examination can easily examine crop growing stages and increase productivity because it provides fast and accurate examine result. This study provide a solution to finding the wheat crop growth stages, Once the growing stages are established, farmers can take suitable and measured steps to improve the production of wheat or other agricultural crops. For finding the growth stages of wheat digital image processing technique is used. RGB model, HSI model, mean value of green colour, hue and saturation images use for examining wheat crop.


Sign in / Sign up

Export Citation Format

Share Document