Runtime Reusable Weaving Model for Cloud Services Using Aspect-Oriented Programming

2019 ◽  
pp. 574-591
Author(s):  
Anas M.R. Alsobeh ◽  
Aws Abed Al Raheem Magableh ◽  
Emad M. AlSukhni

Cloud computing technology has opened an avenue to meet the critical need to securely share distributed resources and web services, and especially those that belong to clients who have sensitive data and applications. However, implementing crosscutting concerns for cloud-based applications is a challenge. This challenge stems from the nature of distributed Web-based technology architecture and infrastructure. One of the key concerns is security logic, which is scattered and tangled across all the cloud service layers. In addition, maintenance and modification of the security aspect is a difficult task. Therefore, cloud services need to be extended by enriching them with features to support adaptation so that these services can become better structured and less complex. Aspect-oriented programming is the right technical solution for this problem as it enables the required separation when implementing security features without the need to change the core code of the server or client in the cloud. Therefore, this article proposes a Runtime Reusable Weaving Model for weaving security-related crosscutting concerns through layers of cloud computing architecture. The proposed model does not require access to the source code of a cloud service and this can make it easier for the client to reuse the needed security-related crosscutting concerns. The proposed model is implemented using aspect orientation techniques to integrate cloud security solutions at the software-as-a-service layer.

2018 ◽  
Vol 15 (1) ◽  
pp. 71-88
Author(s):  
Anas M.R. Alsobeh ◽  
Aws Abed Al Raheem Magableh ◽  
Emad M. AlSukhni

Cloud computing technology has opened an avenue to meet the critical need to securely share distributed resources and web services, and especially those that belong to clients who have sensitive data and applications. However, implementing crosscutting concerns for cloud-based applications is a challenge. This challenge stems from the nature of distributed Web-based technology architecture and infrastructure. One of the key concerns is security logic, which is scattered and tangled across all the cloud service layers. In addition, maintenance and modification of the security aspect is a difficult task. Therefore, cloud services need to be extended by enriching them with features to support adaptation so that these services can become better structured and less complex. Aspect-oriented programming is the right technical solution for this problem as it enables the required separation when implementing security features without the need to change the core code of the server or client in the cloud. Therefore, this article proposes a Runtime Reusable Weaving Model for weaving security-related crosscutting concerns through layers of cloud computing architecture. The proposed model does not require access to the source code of a cloud service and this can make it easier for the client to reuse the needed security-related crosscutting concerns. The proposed model is implemented using aspect orientation techniques to integrate cloud security solutions at the software-as-a-service layer.


2018 ◽  
Vol 10 (4) ◽  
pp. 17-32
Author(s):  
Mustafa I.M. Eid ◽  
Ibrahim M. Al-Jabri ◽  
M. Sadiq Sohail

Research interests on cloud computing adoption and its effectiveness in terms of cost and time has been increasing. However, one of the challenging decisions facing management in adopting cloud services is taking on the right combinations of cloud service delivery and deployment models. A comprehensive review of literature revealed a lack of research addressing this selection decision problem. To fill this research gap, this article proposes an expert system approach for managers to decide on the right combination of service delivery and deployment model selection. The article first proposes a rule-based expert system prototype, which provides advice based on a set of factors that represent the organizational conditions and requirements pertaining to cloud computing adoption. Next, the authors evaluate the system prototype. Lastly, the article concludes with a discussion of the results, its practical implications, limitations, and further research directions.


Author(s):  
Mustafa I.M. Eid ◽  
Ibrahim M. Al-Jabri ◽  
M. Sadiq Sohail

Research interests on cloud computing adoption and its effectiveness in terms of cost and time has been increasing. However, one of the challenging decisions facing management in adopting cloud services is taking on the right combinations of cloud service delivery and deployment models. A comprehensive review of literature revealed a lack of research addressing this selection decision problem. To fill this research gap, this article proposes an expert system approach for managers to decide on the right combination of service delivery and deployment model selection. The article first proposes a rule-based expert system prototype, which provides advice based on a set of factors that represent the organizational conditions and requirements pertaining to cloud computing adoption. Next, the authors evaluate the system prototype. Lastly, the article concludes with a discussion of the results, its practical implications, limitations, and further research directions.


Author(s):  
Manash Sarkar ◽  
Soumya Banerjee ◽  
Youakim Badr ◽  
Arun Kumar Sangaiah

Emerging research concerns about the authenticated cloud service with high performance of security and assuring trust for distributed clients in a smart city. Cloud services are deployed by the third-party or web-based service providers. Thus, security and trust would be considered for every layer of cloud architecture. The principle objective of cloud service providers is to deliver better services with assurance of trust about clients' information. Cloud's users recurrently face different security challenges about the use of sharable resources. It is really difficult for Cloud Service Provider for adapting varieties of security policies to sustain their enterprises' goodwill. To make an optimistic decision that would be better suitable to provide a trusted cloud service for users' in smart city. Statistical method known as Multivariate Normal Distribution is used to select different attributes of different security entities for developing the proposed model. Finally, fuzzy multi objective decision making and Bio-Inspired Bat algorithm are applied to achieve the objective.


2019 ◽  
pp. 847-869
Author(s):  
Manash Sarkar ◽  
Soumya Banerjee ◽  
Youakim Badr ◽  
Arun Kumar Sangaiah

Emerging research concerns about the authenticated cloud service with high performance of security and assuring trust for distributed clients in a smart city. Cloud services are deployed by the third-party or web-based service providers. Thus, security and trust would be considered for every layer of cloud architecture. The principle objective of cloud service providers is to deliver better services with assurance of trust about clients' information. Cloud's users recurrently face different security challenges about the use of sharable resources. It is really difficult for Cloud Service Provider for adapting varieties of security policies to sustain their enterprises' goodwill. To make an optimistic decision that would be better suitable to provide a trusted cloud service for users' in smart city. Statistical method known as Multivariate Normal Distribution is used to select different attributes of different security entities for developing the proposed model. Finally, fuzzy multi objective decision making and Bio-Inspired Bat algorithm are applied to achieve the objective.


2013 ◽  
Vol 4 (2) ◽  
pp. 38-53
Author(s):  
Ruay-Shiung Chang ◽  
Chih-Shan Liao ◽  
Chuan-Yu Liu

The development of cloud computing has advanced rapidly over the past few years. Benefiting from the dynamic characteristics of cloud computing, enterprises can purchase cloud services based on different aspects in order to save operating expenses. Many companies have seen the opportunities and changes in either cloud service providers or cloud service consumers. For the latter, with so many cloud providers to choose from, there is a need for an evaluation of standards to help find the most suitable service provider. In this paper, the essential factors of enterprise clouds are discussed. An evaluation model is defined, and a web-based enterprise cloud selection application is implemented.


2018 ◽  
pp. 337-359
Author(s):  
Manash Sarkar ◽  
Soumya Banerjee ◽  
Youakim Badr ◽  
Arun Kumar Sangaiah

Emerging research concerns about the authenticated cloud service with high performance of security and assuring trust for distributed clients in a smart city. Cloud services are deployed by the third-party or web-based service providers. Thus, security and trust would be considered for every layer of cloud architecture. The principle objective of cloud service providers is to deliver better services with assurance of trust about clients' information. Cloud's users recurrently face different security challenges about the use of sharable resources. It is really difficult for Cloud Service Provider for adapting varieties of security policies to sustain their enterprises' goodwill. To make an optimistic decision that would be better suitable to provide a trusted cloud service for users' in smart city. Statistical method known as Multivariate Normal Distribution is used to select different attributes of different security entities for developing the proposed model. Finally, fuzzy multi objective decision making and Bio-Inspired Bat algorithm are applied to achieve the objective.


End the age of digitalization, data generated from numerous online and offline sources in every second. The Data are having a considerable amount of size and several properties termed as Bigdata. It is challenging to store, manage processes, analyze, visualize, and extract useful information from Bigdata using traditional approaches in local machines. To resolve this cloud computing platform is the solution. Cloud computing has high-level processing units, storage, and applications that do not depend on user devices' performance. Many users can access resources and demanded services remotely from the cloud on a pay-as-use basis. That is why users are not needed to buy and install costly resources locally. Some cloud services providers are Google, AWS, IBM, and Microsoft, and they have their Bigdata analyzing robust systems and products in a cost-efficient manner. There are many Cloud Service Providers (CSP's) having different services of Bigdata analyzing filed. However, we discuss in the paper about an excellent service BigQuery in the Data warehouse product of Google to analyze and represent numerous samples of datasets in real-time for making the right decisions within a short time.


2021 ◽  
Vol 21 (2) ◽  
pp. 1-22
Author(s):  
Abhinav Kumar ◽  
Sanjay Kumar Singh ◽  
K Lakshmanan ◽  
Sonal Saxena ◽  
Sameer Shrivastava

The advancements in the Internet of Things (IoT) and cloud services have enabled the availability of smart e-healthcare services in a distant and distributed environment. However, this has also raised major privacy and efficiency concerns that need to be addressed. While sharing clinical data across the cloud that often consists of sensitive patient-related information, privacy is a major challenge. Adequate protection of patients’ privacy helps to increase public trust in medical research. Additionally, DL-based models are complex, and in a cloud-based approach, efficient data processing in such models is complicated. To address these challenges, we propose an efficient and secure cancer diagnostic framework for histopathological image classification by utilizing both differential privacy and secure multi-party computation. For efficient computation, instead of performing the whole operation on the cloud, we decouple the layers into two modules: one for feature extraction using the VGGNet module at the user side and the remaining layers for private prediction over the cloud. The efficacy of the framework is validated on two datasets composed of histopathological images of the canine mammary tumor and human breast cancer. The application of differential privacy preserving to the proposed model makes the model secure and capable of preserving the privacy of sensitive data from any adversary, without significantly compromising the model accuracy. Extensive experiments show that the proposed model efficiently achieves the trade-off between privacy and model performance.


Author(s):  
Olexander Melnikov ◽  
◽  
Konstantin Petrov ◽  
Igor Kobzev ◽  
Viktor Kosenko ◽  
...  

The article considers the development and implementation of cloud services in the work of government agencies. The classification of the choice of cloud service providers is offered, which can serve as a basis for decision making. The basics of cloud computing technology are analyzed. The COVID-19 pandemic has identified the benefits of cloud services in remote work Government agencies at all levels need to move to cloud infrastructure. Analyze the prospects of cloud computing in Ukraine as the basis of e-governance in development. This is necessary for the rapid provision of quality services, flexible, large-scale and economical technological base. The transfer of electronic information interaction in the cloud makes it possible to attract a wide range of users with relatively low material costs. Automation of processes and their transfer to the cloud environment make it possible to speed up the process of providing services, as well as provide citizens with minimal time to obtain certain information. The article also lists the risks that exist in the transition to cloud services and the shortcomings that may arise in the process of using them.


Sign in / Sign up

Export Citation Format

Share Document