A Cloud-Based Patient Health Monitoring System Using the Internet of Things

Author(s):  
R. Murugan

To conquer medical carelessness, a novel framework will be created on the grounds that daily medicinal services are essential. This framework conveys equipment, and Android application, the pulse, temperature of body, dampness rate are detected by the sensor in equipment. There is a Raspberry pi over which this detected information is transferred. The system dependent on internet of things (IOT) is utilized for remotely getting to information. With the end goal to get to the information universally, IOT used to keep all refreshed data on pages, a great opportunity to put information on mists. There is an Android-based application that can get to information from server through wi-fi to give us a chance to see the detected information. On the off chance that any of the anomalies are discovered, those must be settled, so it will send message to tolerant and individual specialists.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lei Ru ◽  
Bin Zhang ◽  
Jing Duan ◽  
Guo Ru ◽  
Ashutosh Sharma ◽  
...  

The technological advent in smart sensing devices and the Internet has provided practical solutions in various sectors of networking, public and private sector industries, and government organizations worldwide. This study intends to combine the Internet of Things (IoT) technology with health monitoring to make it personalized and timely through allowing the interconnection between the devices. This work is aimed at exploring various wearable health monitoring modules that people wear to monitor heart rate, blood pressure, pulse, body temperature, and physiological information. The information is acquired using the wireless sensor to create a health monitoring system. The data is integrated using the Internet of Things for processing, connecting, and computing to achieve real-time monitoring. The temperature of three people measured by the temperature thermometer is 36.4, 36.7, and 36.5 (°C), respectively, and the average acquired by the monitoring system of the three people is 36.5, 36.4, and 36.5 (°C), respectively, indicating that the system demonstrated relatively accurate and stable testability. The user’s ECG is displayed clearly and conveniently using the ECG acquisition system. The pulse rate of the three people tested by the system is 78, 78, and 79 (times/min), respectively, similar to the medical pulse meter results. The physiological information acquired using the semantic recognition, matching system, and character matching system is relatively accurate. It concludes that the human health monitoring system based on the Internet of Things can provide people with daily health management, instrumental in heightening health service quality and level.


2019 ◽  
Vol 12 (1) ◽  
pp. 08-13 ◽  
Author(s):  
E. N. GANESH

Health Monitoring system using IOT describes the collection and interoperation of Patient data collected from the sensors from the hospitals through IOT Technology. The collected sensor data will support the doctor in the emergency situation for the betterment and improvement of Patient health. The hardware platform to implement the project consists of a sensor and Raspberry Pi 3 Model B equipped in a way to communicate with a doctor through the Internet and Smart Phone. This proposed idea will help doctors to know about the state of patient health and monitor anywhere in the world. In this proposed idea the sensors gather the medical information of the patient that includes patient’s heart rate, blood pressure, and pulse rate Then using the camera the patient is livelily monitored through the Raspberry kit and this information is sent to the Internet and stored in a medical server. The doctor and patient can monitor the patient data from any place of the world through the provided IP server address anytime. The emergency alert is sent to the patient if the sensor value is exceeded by the threshold data. Thus the patient's health parameters are watched lively and regular monitoring through the medical server to a doctor will help to make an effective diagnosis and almost accurate care can be given. The data collected through the IOT will help the patient to recover easily and also enhanced medical care can be given to the patients at a low cost.


2018 ◽  
Vol 7 (4.44) ◽  
pp. 172
Author(s):  
Erfan Rohadi ◽  
Raka Admiral Abdurrahman ◽  
Ekojono . ◽  
Rosa Andrie Asmara ◽  
Indrazno Siradjuddin ◽  
...  

Recently, The Internet of Things (IoT) has been implemented and become an interesting topic for discussion. IoT is a method that aims to maximize the benefits of Internet connectivity to transfer and process data or information through an internet network wirelessly, virtual and autonomous. One of the IoT's utilization is automation system. The automation system generally uses a timer for the plant watering process. The use of timers aims to water the plants routinely without human assistance. The development of this automation system begins with the making of the prototype of chili land in the field 5 x 2.5 meters, then compile the required components and how it works. Further programming of sensors to Raspberry Pi as a controller in the system based on the conditions that have been set and changes in temperature received by the sensor. As a result, the system has been successfully done automatic watering, both on a regular basis (at 06.00 and 18.00) and cooling watering. Cooling is done if the temperature exceeds more than 30 degrees Celsius. The automation system promises to be applied to the utilization of land around the house.  


Cardiovascular diseases (CVD) has emerged as one of the major causes for death in all over the world. This paper displays a framework to remotely screen, health of Cardiovascular disease affected patients utilizing Machine to Machine (M2M) innovation which is a part of the project called CySician . Real time patient health monitoring system is advantageous to the patients and society as it will significantly reduce medical charges, waiting time for patient and improve patient handling capability of any hospital. In this patient health monitoring system pulse rate, ECG, body temperature, Body Mass Index(BMI) and general clinical interrogation is finished by a chatbot named “LifeBot”. The primary components associated with this project are pulse sensor, Raspberry Pi 3B+ (processing unit), temperature sensor module sensor, utilizing Machine Learning (ML) calculation it automatically analyzes the accumulated information to propose prescription to the patient. After the patient is diagnosed and the disease is detected, the patient will be notified with the kind of medication he needs. If the problem is nominal, the patient will be suggested with a basic treatment and will be monitored regularly. If the problem is of major scale, the patient will be directed to the payment gateway where he will be asked to pay a nominal fee for appointment from doctors to continue his check-up .Ultimately, the final well-being report is displayed to the doctor on the User interface that is visible on PC/Laptop.


Author(s):  
A. Ramya Visalatchi ◽  
R. Yogamathi

One among the various applications enabled with the aid of the Internet of Things (IoT) is wearable technology, where smart and pervasive health care is an important one. Network sensors, either worn on the frame or embedded in our environments; make possible the collection of rich information of our physical and mental health. Captured on a continuous basis, aggregated, and efficiently supervised, such statistics can bring about a positive transformation in health care system


Sign in / Sign up

Export Citation Format

Share Document