scholarly journals A Novel Broadband Monopole Antenna with T-Slot, CB-CPW, Parasitic Stripe and Heart-Shaped Slice for 5G Applications

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7002
Author(s):  
Zhendong Ding ◽  
Hao Wang ◽  
Shifei Tao ◽  
Dan Zhang ◽  
Chunyu Ma ◽  
...  

This paper presents a novel broadband monopole antenna that was equipped with a bottom semicircle ground structure, a parasitic patch, a T-shaped slot, s transmission line, a parasitic strip, heart-shaped slices and a coplanar waveguide (CPW). The simulation results revealed that the proposed design had a relatively high return loss, a wide bandwidth and high efficiency. A prototype of the proposed antenna with an overall size of 0.94 λ0 × 0.94 λ0 × 0.02 λ0 (λ0 is the free-space wavelength) was fabricated and measured. The measurement results showed that the prototype had a bandwidth of 4.02 GHz (4.69–8.71 GHz) and a relative bandwidth of 60%. Besides, the maximum gain was 3.31 dBi and the maximum efficiency was 91.1% in the range of 5 to 8.5 GHz. Furthermore, it was found that the prototype almost achieved omnidirectional radiation. Its operating frequency band covered those of industrial scientific medical (ISM) (5.725–5.850 GHz), the radio frequency identification (RFID) (5.8 GHz) and the wireless local area network (WLAN) (5.15–5.25 GHz and 5.725–5.825 GHz).

Author(s):  
Ketavath Kumar Naik

The kapton polyimide material is considered to design conformal antenna with spiral square for radio frequency identification (RFID) and wireless local area network (WLAN) applications. In this chapter, the analysis and investigation has been carried out with spiral square techniques using coplanar waveguide (CPW) feed. The proposed antenna operates at 5.8 GHz with impedance bandwidth of 170 MHz (5.73 - 5.9 GHz) with return loss -25.6 dB and gain is 2.4 dBi. The proposed antenna has considered with different bending angles for investigating the conformal characteristics due to flexibility of the material. These results are presented for omni-directional radiation patterns.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sangjin Jo ◽  
Hyunjin Choi ◽  
Beomsoo Shin ◽  
Sangyeol Oh ◽  
Jaehoon Lee

We present a simple coplanar waveguide- (CPW-) fed rectangular ring monopole antenna designed for dual-band wireless local area network (WLAN) applications. The antenna is based on a simple structure composed of a CPW feed line and a rectangular ring. Dual-band WLAN operation can be achieved by controlling the distance between the rectangular ring and the ground plane of the CPW feed line, as well as the horizontal vertical lengths of the rectangular ring. Simulated and measured data show that the antenna has a compact size of21.4×59.4 mm2, an impedance bandwidths of 2.21–2.70 GHz and 5.04–6.03 GHz, and a reflection coefficient of less than −10 dB. The antenna also exhibits an almost omnidirectional radiation pattern. This simple compact antenna with favorable frequency characteristics therefore is attractive for applications in dual-band WLAN.


2019 ◽  
Vol 28 (06) ◽  
pp. 1950101
Author(s):  
Wang Ren ◽  
Peng-Hong Wang

A coplanar waveguide (CPW)-fed I-shaped monopole antenna with independent frequency control characteristic is presented for simultaneously satisfying the global positioning system (GPS), wireless local area network (WLAN), and worldwide interoperability for microwave access (WiMAX) applications. It is printed on an FR4 substrate with a single-layered metallic structure and the overall dimensions are [Formula: see text][Formula: see text]mm3. The proposed antenna consists of an I-shaped monopole, a pair of split-ring resonators (SRRs), and a coplanar ground plane. The unique advantage of this study is that the four frequency bands are generated individually by different radiating elements. That is, each of them can be controlled independently with little interference from others, which brings added convenience to the antenna design, optimization and debugging processes. Simulated and measured results both demonstrate that it can cover the 1.575[Formula: see text]GHz GPS (1.57–1.59[Formula: see text]GHz); 2.4/5.2/5.8[Formula: see text]GHz WLAN (2.4–2.485, 5.15–5.35 and 5.725–5.825[Formula: see text]GHz) and 3.5/5.5[Formula: see text]GHz WiMAX (3.40–3.60 and 5.25–5.85[Formula: see text]GHz) applications with satisfactory radiation patterns and acceptable gains.


2018 ◽  
Vol 10 (4) ◽  
pp. 460-468 ◽  
Author(s):  
Wang Ren ◽  
Li-Juan Zhang ◽  
Shu-Wei Hu

This paper presents a novel asymmetric coplanar waveguide-fed quad-band hybrid antenna for wireless applications. The proposed hybrid antenna combines a conventional monopole antenna and a zeroth-order resonator antenna to perform a dual-mode operation. The first mode is generated by a slotted monopole antenna, supporting the two higher resonances at about 3.5 and 5.8 GHz. The second mode is supported by loading a composite right-/left-handed transmission line unit cell near the slotted monopole, contributing to the two lower resonances at about 1.6 and 2.5 GHz. It is printed on an FR4 substrate with the overall dimensions of 40 mm × 24 mm × 1.6 mm. Experimental results demonstrate that it can cover the global positioning system (1.57–1.59 GHz), wireless local area network (2.4–2.485, 5.15–5.35, and 5.725–5.825 GHz), and worldwide interoperability for microwave access (2.5–2.69, 3.3–3.7, and 5.25–5.85 GHz) applications with monopole-like radiation patterns and acceptable gains.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012004
Author(s):  
Noraini Azmi ◽  
Latifah Munirah Kamarudin ◽  
Latifah Mohamed ◽  
Ammar Zakaria ◽  
Mohd Hafiz Fazalul Rahiman ◽  
...  

Abstract Radio Frequency Identification (RFID) enables a large number of object monitoring since semi/passive tags are independent of batteries. In our previous work, the possibility of using different wireless technologies such as Wireless Sensor Network (WSN), Wireless Local Area Network (WLAN) and Radio Frequency Identification (RFID) to determine the moisture content in rice was investigated. Finding from our previous work suggest that RFID can be used to determine the moisture content of rice. While numerous research have been conducted for moisture content of grain, however, to author’s knowledge, there is only a few studies conducted on the localization of grain hostpot. Therefore, this study aims to investigate if the passive RFID array can be used to localize the location of the wet spot of grain. Prior, the experiment, a suitable setting for the RFID system were determined. In addition, a simple test was conducted to select a suitable operating frequency. From the investigation, the result indicates that only frequency channels 865, 866, 867, 868 and 869 MHz can detect all 30 tags. Meanwhile, frequency channel in the range 902 to 928 MHz detects 26 to 29 unique tags. Hence, 868 MHz was selected as the operating frequency throughout the experiment. The findings indicate that the RSSI value measured by the RFID reader decreased as the moisture of the sample increased when the tags were blocked by the sample placed at the designated location during the test.


2014 ◽  
Vol 8 (1) ◽  
pp. 103-108 ◽  
Author(s):  
Kalikuzhackal Abbas Ansal ◽  
Thangavelu Shanmuganatham

A compact asymmetric coplanar strip (ACS)-fed monopole antenna for dual-band application is presented. The single-layer antenna composed of inverted L-shaped exciting strip and an L-shaped lateral ground plane. The antenna resonating at two different frequencies, 2.4 and 5.8 GHz is covering the wireless local area network/radio frequency identification bands. The antenna has an overall dimension of 35 × 5.7 mm2when printed on a substrate of dielectric constant 4.4 and loss tangent 0.02. The planar design, simple feeding, and compactness make it easy for the integration of the antenna into circuit boards. Details of the antenna design, and simulated and experimental results are presented and discussed. The experimental result shows good conformity with simulated results. The simulation tool based on the method of moments (Mentor Graphics IE3D version 15.10) has been used to analyze and optimize the antenna.


Author(s):  
Priya Sharma ◽  
Ashutosh Kumar Singh

A compact rectangular slotted antenna fed through coplanar waveguide for rectenna system is proposed in the application of radio frequency (RF) energy harvesting at center frequency of 2.45 GHz in the wireless local area network (WLAN) band. Three unequal widths of rectangular slots with equal distance have been created step by step to maximize the peak gain to 3.6 dB of the antenna. Radiation plot of the proposed antenna has been depicted to be omnidirectional for RF energy harvesting with maximum radiation efficiency characteristics. The dimension of the antenna is reduced up to 28 × 17 mm2 with better reflection coefficient of -34.6dB.


2019 ◽  
Vol 11 (4) ◽  
pp. 351-358 ◽  
Author(s):  
Priyanka Garg ◽  
Priyanka Jain

AbstractIn this paper, a compact, low-profile, coplanar waveguide-fed metamaterial inspired dual-band microstrip antenna is presented for Wireless Local Area Network (WLAN) application. To achieve the goal a triangular split ring resonator is used along with an open-ended stub. The proposed antenna has a compact size of 20 × 24 mm2 fabricated on an FR-4 epoxy substrate with dielectric constant (εr) 4.4. The antenna provides two distinct bands I from 2.40 to 2.48 GHz and II from 4.7 to 6.04 GHz with reflection coefficient better than −10 dB, covering the entire WLAN (2.4/5.2/5.8 GHz) band spectrum. The performance of the proposed metamaterial inspired antenna is also studied in terms of the radiation pattern, efficiency, and the realized gain. A comparative study is also presented to show the performance of the proposed metamaterial inspired antenna with respect to other conventional antenna structures in terms of overall size, bandwidth, gain, and reflection coefficient. Finally, the antenna is fabricated and tested. The simulated results show good agreement with the measured results.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Joong-Han Yoon ◽  
Young-Chul Rhee ◽  
Woo-Su Kim

A triple-band rectangular ring, open-ended monopole antenna with symmetricLstrips for wireless local area network (WLAN)/Worldwide Interoperability of Microwave Access (WiMAX) applications is proposed. The proposed antenna consists of two symmetric folded arms andLstrips. Based on the concept, a prototype of the proposed triple antenna has been designed, fabricated, and tested. The numerical and experimental results demonstrated that the proposed antenna satisfied the −10 dB impedance bandwidth requirement while simultaneously covering the WLAN and WiMAX bands. Furthermore, this paper presented and discussed the 2D radiation patterns and 3D gains according to the results of the experiment. The proposed antenna’s peak gain varied between 2.17 and 4.93 dBi, and its average gain varied between −2.97 and −0.53 dBi.


Sign in / Sign up

Export Citation Format

Share Document