Concerns with "Mutual Constitution"

Author(s):  
Alistair Mutch

The case for ‘analytical dualism’ as a means of approaching sociotechnical action is presented as an alternative to accounts which tend to conflate agency, structure and technology. This is based on the work of Margaret Archer, whose work is in turn located in the traditions of critical realism. Her commitment to analytical dualism, which stresses both the importance of time in analysis and the emergent properties of structure, is argued to give a firmer purchase on the notion of context than the alternatives based on, for example, the work of Giddens and Latour.

Author(s):  
Alistair Mutch

The case for ‘analytical dualism’ as a means of approaching sociotechnical action is presented as an alternative to accounts which tend to conflate agency, structure and technology. This is based on the work of Margaret Archer, whose work is in turn located in the traditions of critical realism. Her commitment to analytical dualism, which stresses both the importance of time in analysis and the emergent properties of structure, is argued to give a firmer purchase on the notion of context than the alternatives based on, for example, the work of Giddens and Latour.


2008 ◽  
pp. 2217-2228
Author(s):  
Alistair Mutch

The case for “analytical dualism” as a means of approaching sociotechnical action is presented as an alternative to accounts which tend to conflate agency, structure, and technology. This is based on the work of Margaret Archer, whose work is in turn located in the traditions of critical realism. Her commitment to analytical dualism, which stresses both the importance of time in analysis and the emergent properties of structure, is argued to give a firmer purchase on the notion of context than the alternatives based on, for example, the work of Giddens and Latour.


MIS Quarterly ◽  
2013 ◽  
Vol 37 (3) ◽  
pp. 819-834 ◽  
Author(s):  
Olga Volkoff ◽  
◽  
Diane M. Strong ◽  

2020 ◽  
Author(s):  
Ian Colliard ◽  
Gregory Morrosin ◽  
Hans-Conrad zur Loye ◽  
May Nyman

Superatoms are nanometer-sized molecules or particles that can form ordered lattices, mimicking their atomic counterparts. Hierarchical assembly of superatoms gives rise to emergent properties in superlattices of quantum-dots, p-block clusters, and fullerenes. Here, we introduce a family of uranium-oxysulfate cluster anions whose hierarchical assembly in water is controlled by two parameters; acidity and the countercation. In acid, larger Ln<sup>III</sup> (Ln=La-Ho) link hexamer (U<sub>6</sub>) oxoclusters into body-centered cubic frameworks, while smaller Ln<sup>III</sup> (Ln=Er-Lu &Y) promote linking of fourteen U<sub>6</sub>-clusters into hollow superclusters (U<sub>84</sub> superatoms). U<sub>84</sub> assembles into superlattices including cubic-closest packed, body-centered cubic, and interpenetrating networks, bridged by interstitial countercations, and U<sub>6</sub>-clusters. Divalent transition metals (TM=Mn<sup>II </sup>and Zn<sup>II</sup>), with no added acid, charge-balance and promote the fusion of 10 U<sub>6</sub> and 10 U-monomers into a wheel–shaped cluster (U<sub>70</sub>). Dissolution of U<sub>70</sub> in organic media reveals (by small-angle Xray scattering) that differing supramolecular assemblies are accessed, controlled by TM-linking of U<sub>70</sub>-clusters. <br>


2020 ◽  
Author(s):  
Y Liu ◽  
AL Heath ◽  
B Galland ◽  
N Rehrer ◽  
L Drummond ◽  
...  

© 2020 American Society for Microbiology. Dietary fiber provides growth substrates for bacterial species that belong to the colonic microbiota of humans. The microbiota degrades and ferments substrates, producing characteristic short-chain fatty acid profiles. Dietary fiber contains plant cell wall-associated polysaccharides (hemicelluloses and pectins) that are chemically diverse in composition and structure. Thus, depending on plant sources, dietary fiber daily presents the microbiota with mixtures of plant polysaccharides of various types and complexity. We studied the extent and preferential order in which mixtures of plant polysaccharides (arabinoxylan, xyloglucan, β-glucan, and pectin) were utilized by a coculture of five bacterial species (Bacteroides ovatus, Bifidobacterium longum subspecies longum, Megasphaera elsdenii, Ruminococcus gnavus, and Veillonella parvula). These species are members of the human gut microbiota and have the biochemical capacity, collectively, to degrade and ferment the polysaccharides and produce short-chain fatty acids (SCFAs). B. ovatus utilized glycans in the order β-glucan, pectin, xyloglucan, and arabinoxylan, whereas B. longum subsp. longum utilization was in the order arabinoxylan, arabinan, pectin, and β-glucan. Propionate, as a proportion of total SCFAs, was augmented when polysaccharide mixtures contained galactan, resulting in greater succinate production by B. ovatus and conversion of succinate to propionate by V. parvula. Overall, we derived a synthetic ecological community that carries out SCFA production by the common pathways used by bacterial species for this purpose. Systems like this might be used to predict changes to the emergent properties of the gut ecosystem when diet is altered, with the aim of beneficially affecting human physiology. This study addresses the question as to how bacterial species, characteristic of the human gut microbiota, collectively utilize mixtures of plant polysaccharides such as are found in dietary fiber. Five bacterial species with the capacity to degrade polymers and/or produce acidic fermentation products detectable in human feces were used in the experiments. The bacteria showed preferential use of certain polysaccharides over others for growth, and this influenced their fermentation output qualitatively. These kinds of studies are essential in developing concepts of how the gut microbial community shares habitat resources, directly and indirectly, when presented with mixtures of polysaccharides that are found in human diets. The concepts are required in planning dietary interventions that might correct imbalances in the functioning of the human microbiota so as to support measures to reduce metabolic conditions such as obesity.


Author(s):  
A. V. Smirnov ◽  
T. V. Levashova

Introduction: Socio-cyber-physical systems are complex non-linear systems. Such systems display emergent properties. Involvement of humans, as a part of these systems, in the decision-making process contributes to overcoming the consequences of the emergent system behavior, since people can use their experience and intuition, not just the programmed rules and procedures.Purpose: Development of models for decision support in socio-cyber-physical systems.Results: A scheme of decision making in socio-cyber-physical systems, a conceptual framework of decision support in these systems, and stepwise decision support models have been developed. The decision-making scheme is that cybernetic components make their decisions first, and if they cannot do this, they ask humans for help. The stepwise models support the decisions made by components of socio-cyber-physical systems at the conventional stages of the decision-making process: situation awareness, problem identification, development of alternatives, choice of a preferred alternative, and decision implementation. The application of the developed models is illustrated through a scenario for planning the execution of a common task for robots.Practical relevance: The developed models enable you to design plans on solving tasks common for system components or on achievement of common goals, and to implement these plans. The models contribute to overcoming the consequences of the emergent behavior of socio-cyber-physical systems, and to the research on machine learning and mobile robot control.


Sign in / Sign up

Export Citation Format

Share Document