Simulating Urban Dynamics Using Cellular Automata

Author(s):  
Xia Li

This chapter introduces the concepts of cellular automata (CA) which have been increasingly used for simulating urban dynamics. Simulation and prediction of urban evolution can provide the useful inputs to crime models. However, calibration of urban cellular automata is crucial for simulating realistic cities. Simulation of multiple land use changes using CA is difficult because numerous spatial variables and parameters have to be utilized. The incorporation of neural networks with CA can alleviate the calibration problems. This chapter illustrates how complex land use dynamics can be simulated by the integration of CA and neural networks.

2008 ◽  
Vol 22 (9) ◽  
pp. 943-963 ◽  
Author(s):  
C. M. Almeida ◽  
J. M. Gleriani ◽  
E. F. Castejon ◽  
B. S. Soares‐Filho

Author(s):  
E. A. L. Pinheiro ◽  
N. A. Camini ◽  
M. R. S. Soares ◽  
S. S. Sumida

Abstract. The factors that contribute to land use change in the municipality of Gaúcha do Norte - MT, are entirely linked to the economic process and agricultural production. This process has left Brazil in a state of alert due to the process of deforestation and loss of tropical forests. From 2000 to 2010, the forest areas converted into agriculture accounted for 13.3%, the main factor that directly potentiated with deforestation was the cultivation of soybeans, which in turn was occupying places previously occupied by livestock and pushing the livestock forest inside. The phenomena of land use change and land cover start from multidimensional issues in the environmental and economic context. The use of environmental modeling through cellular automata to analyze land use change phenomena and reproduce the trajectory through future land use simulations and evolution establishes an integration associated by mathematical models and flow integration systems. That predict the trajectory of land use change, thus generating a dynamic model capable of predicting future land use changes by replicating possible patterns of landscape evolution and enabling assessments of future ecological implications for the environment.


2021 ◽  
Vol 13 (6) ◽  
pp. 3473
Author(s):  
Yong Lai ◽  
Guangqing Huang ◽  
Shengzhong Chen ◽  
Shaotao Lin ◽  
Wenjun Lin ◽  
...  

Anthropogenic land-use change is one of the main drivers of global environmental change. China has been on a fast track of land-use change since the Reform and Opening-up policy in 1978. In view of the situation, this study aims to optimize land use and provide a way to effectively coordinate the development and ecological protection in China. We took East Guangdong (EGD), an underdeveloped but populous region, as a case study. We used land-use changes indexes to demonstrate the land-use dynamics in EGD from 2000 to 2020, then identified the hot spots for fast-growing areas of built-up land and simulated land use in 2030 using the future land-use simulation (FLUS) model. The results indicated that the cropland and the built-up land changed in a large proportion during the study period. Then we established the ecological security pattern (ESP) according to the minimal cumulative resistance model (MCRM) based on the natural and socioeconomic factors. Corridors, buffer zones, and the key nodes were extracted by the MCRM to maintain landscape connectivity and key ecological processes of the study area. Moreover, the study showed the way to identify the conflict zones between future built-up land expansion with the corridors and buffer zones, which will be critical areas of consideration for future land-use management. Finally, some relevant policy recommendations are proposed based on the research result.


2019 ◽  
Vol 8 (10) ◽  
pp. 454 ◽  
Author(s):  
Junfeng Kang ◽  
Lei Fang ◽  
Shuang Li ◽  
Xiangrong Wang

The Cellular Automata Markov model combines the cellular automata (CA) model’s ability to simulate the spatial variation of complex systems and the long-term prediction of the Markov model. In this research, we designed a parallel CA-Markov model based on the MapReduce framework. The model was divided into two main parts: A parallel Markov model based on MapReduce (Cloud-Markov), and comprehensive evaluation method of land-use changes based on cellular automata and MapReduce (Cloud-CELUC). Choosing Hangzhou as the study area and using Landsat remote-sensing images from 2006 and 2013 as the experiment data, we conducted three experiments to evaluate the parallel CA-Markov model on the Hadoop environment. Efficiency evaluations were conducted to compare Cloud-Markov and Cloud-CELUC with different numbers of data. The results showed that the accelerated ratios of Cloud-Markov and Cloud-CELUC were 3.43 and 1.86, respectively, compared with their serial algorithms. The validity test of the prediction algorithm was performed using the parallel CA-Markov model to simulate land-use changes in Hangzhou in 2013 and to analyze the relationship between the simulation results and the interpretation results of the remote-sensing images. The Kappa coefficients of construction land, natural-reserve land, and agricultural land were 0.86, 0.68, and 0.66, respectively, which demonstrates the validity of the parallel model. Hangzhou land-use changes in 2020 were predicted and analyzed. The results show that the central area of construction land is rapidly increasing due to a developed transportation system and is mainly transferred from agricultural land.


2020 ◽  
Vol 12 (4) ◽  
pp. 1396
Author(s):  
Shufang Wang ◽  
Xiyun Jiao ◽  
Liping Wang ◽  
Aimin Gong ◽  
Honghui Sang ◽  
...  

The simulation and prediction of the land use changes is generally carried out by cellular automata—Markov (CA-Markov) model, and the generation of suitable maps collection is subjective in the simulation process. In this study, the CA-Markov model was improved by the Boosted Regression Trees (BRT) to simulate land use to make the model objectively. The weight of ten driving factors of the land use changes was analyzed in BRT, in order to produce the suitable maps collection. The accuracy of the model was verified. The outcomes represent a match of over 84% between simulated and actual land use in 2015, and the Kappa coefficient was 0.89, which was satisfactory to approve the calibration process. The land use of Hotan Oasis in 2025 and 2035 were predicted by means of this hybrid model. The area of farmland, built-up land and water body in Hotan Oasis showed an increasing trend, while the area of forestland, grassland and unused land continued to show a decreasing trend in 2025 and 2035. The government needs to formulate measures to improve the utilization rate of water resources to meet the growth of farmland, and need to increase ecological environment protection measures to curb the reduction of grass land and forest land for the ecological health.


Sign in / Sign up

Export Citation Format

Share Document