Automated Cryptanalysis of Classical Ciphers

Author(s):  
Otokar Grošek ◽  
Pavol Zajac

Classical ciphers are used to encrypt plaintext messages written in a natural language in such a way that they are readable for sender or intended recipient only. Many classical ciphers can be broken by brute-force search through the key-space. Methods of artificial intelligence, such as optimization heuristics, can be used to narrow the search space, to speed-up text processing and text recognition in the cryptanalytic process. Here we present a broad overview of different AI techniques usable in cryptanalysis of classical ciphers. Specific methods to effectively recognize the correctly decrypted text among many possible decrypts are discussed in the next part Automated cryptanalysis – Language processing.

Author(s):  
Miss. Aliya Anam Shoukat Ali

Natural Language Processing (NLP) could be a branch of Artificial Intelligence (AI) that allows machines to know the human language. Its goal is to form systems that can make sense of text and automatically perform tasks like translation, spell check, or topic classification. Natural language processing (NLP) has recently gained much attention for representing and analysing human language computationally. It's spread its applications in various fields like computational linguistics, email spam detection, information extraction, summarization, medical, and question answering etc. The goal of the Natural Language Processing is to style and build software system which will analyze, understand, and generate languages that humans use naturally, so as that you just could also be ready to address your computer as if you were addressing another person. Because it’s one amongst the oldest area of research in machine learning it’s employed in major fields like artificial intelligence speech recognition and text processing. Natural language processing has brought major breakthrough within the sector of COMPUTATION AND AI.


2021 ◽  
pp. 1-13
Author(s):  
Lamiae Benhayoun ◽  
Daniel Lang

BACKGROUND: The renewed advent of Artificial Intelligence (AI) is inducing profound changes in the classic categories of technology professions and is creating the need for new specific skills. OBJECTIVE: Identify the gaps in terms of skills between academic training on AI in French engineering and Business Schools, and the requirements of the labour market. METHOD: Extraction of AI training contents from the schools’ websites and scraping of a job advertisements’ website. Then, analysis based on a text mining approach with a Python code for Natural Language Processing. RESULTS: Categorization of occupations related to AI. Characterization of three classes of skills for the AI market: Technical, Soft and Interdisciplinary. Skills’ gaps concern some professional certifications and the mastery of specific tools, research abilities, and awareness of ethical and regulatory dimensions of AI. CONCLUSIONS: A deep analysis using algorithms for Natural Language Processing. Results that provide a better understanding of the AI capability components at the individual and the organizational levels. A study that can help shape educational programs to respond to the AI market requirements.


Author(s):  
Seonho Kim ◽  
Jungjoon Kim ◽  
Hong-Woo Chun

Interest in research involving health-medical information analysis based on artificial intelligence, especially for deep learning techniques, has recently been increasing. Most of the research in this field has been focused on searching for new knowledge for predicting and diagnosing disease by revealing the relation between disease and various information features of data. These features are extracted by analyzing various clinical pathology data, such as EHR (electronic health records), and academic literature using the techniques of data analysis, natural language processing, etc. However, still needed are more research and interest in applying the latest advanced artificial intelligence-based data analysis technique to bio-signal data, which are continuous physiological records, such as EEG (electroencephalography) and ECG (electrocardiogram). Unlike the other types of data, applying deep learning to bio-signal data, which is in the form of time series of real numbers, has many issues that need to be resolved in preprocessing, learning, and analysis. Such issues include leaving feature selection, learning parts that are black boxes, difficulties in recognizing and identifying effective features, high computational complexities, etc. In this paper, to solve these issues, we provide an encoding-based Wave2vec time series classifier model, which combines signal-processing and deep learning-based natural language processing techniques. To demonstrate its advantages, we provide the results of three experiments conducted with EEG data of the University of California Irvine, which are a real-world benchmark bio-signal dataset. After converting the bio-signals (in the form of waves), which are a real number time series, into a sequence of symbols or a sequence of wavelet patterns that are converted into symbols, through encoding, the proposed model vectorizes the symbols by learning the sequence using deep learning-based natural language processing. The models of each class can be constructed through learning from the vectorized wavelet patterns and training data. The implemented models can be used for prediction and diagnosis of diseases by classifying the new data. The proposed method enhanced data readability and intuition of feature selection and learning processes by converting the time series of real number data into sequences of symbols. In addition, it facilitates intuitive and easy recognition, and identification of influential patterns. Furthermore, real-time large-capacity data analysis is facilitated, which is essential in the development of real-time analysis diagnosis systems, by drastically reducing the complexity of calculation without deterioration of analysis performance by data simplification through the encoding process.


Author(s):  
Ayush Srivastav ◽  
Hera Khan ◽  
Amit Kumar Mishra

The chapter provides an eloquent account of the major methodologies and advances in the field of Natural Language Processing. The most popular models that have been used over time for the task of Natural Language Processing have been discussed along with their applications in their specific tasks. The chapter begins with the fundamental concepts of regex and tokenization. It provides an insight to text preprocessing and its methodologies such as Stemming and Lemmatization, Stop Word Removal, followed by Part-of-Speech tagging and Named Entity Recognition. Further, this chapter elaborates the concept of Word Embedding, its various types, and some common frameworks such as word2vec, GloVe, and fastText. A brief description of classification algorithms used in Natural Language Processing is provided next, followed by Neural Networks and its advanced forms such as Recursive Neural Networks and Seq2seq models that are used in Computational Linguistics. A brief description of chatbots and Memory Networks concludes the chapter.


Author(s):  
Katie Miller

The challenge presented is an age when some decisions are made by humans, some are made by AI, and some are made by a combination of AI and humans. For the person refused housing, a phone service, or employment, the experience is the same, but the ability to understand what has happened and obtain a remedy may be very different if the discrimination is attributable to or contributed by an AI system. If we are to preserve the policy intentions of our discrimination, equal opportunity, and human rights laws, we need to understand how discrimination arises in AI systems; how design in AI systems can mitigate such discrimination; and whether our existing laws are adequate to address discrimination in AI. This chapter endeavours to provide this understanding. In doing so, it focuses on narrow but advanced forms of artificial intelligence, such as natural language processing, facial recognition, and cognitive neural networks.


Author(s):  
Marina Sokolova ◽  
Stan Szpakowicz

This chapter presents applications of machine learning techniques to traditional problems in natural language processing, including part-of-speech tagging, entity recognition and word-sense disambiguation. People usually solve such problems without difficulty or at least do a very good job. Linguistics may suggest labour-intensive ways of manually constructing rule-based systems. It is, however, the easy availability of large collections of texts that has made machine learning a method of choice for processing volumes of data well above the human capacity. One of the main purposes of text processing is all manner of information extraction and knowledge extraction from such large text. Machine learning methods discussed in this chapter have stimulated wide-ranging research in natural language processing and helped build applications with serious deployment potential.


Sign in / Sign up

Export Citation Format

Share Document