Evolutionary Computation and Genetic Algorithms

Author(s):  
William H. Hsu

A genetic algorithm (GA) is a method used to find approximate solutions to difficult search, optimization, and machine learning problems (Goldberg, 1989) by applying principles of evolutionary biology to computer science. Genetic algorithms use biologically-derived techniques such as inheritance, mutation, natural selection, and recombination. They are a particular class of evolutionary algorithms. Genetic algorithms are typically implemented as a computer simulation in which a population of abstract representations (called chromosomes) of candidate solutions (called individuals) to an optimization problem evolves toward better solutions. Traditionally, solutions are represented in binary as strings of 0s and 1s, but different encodings are also possible. The evolution starts from a population of completely random individuals and happens in generations. In each generation, multiple individuals are stochastically selected from the current population, modified (mutated or recombined) to form a new population, which becomes current in the next iteration of the algorithm.

Author(s):  
William H. Hsu

A genetic algorithm (GA) is a procedure used to find approximate solutions to search problems through the application of the principles of evolutionary biology. Genetic algorithms use biologically inspired techniques, such as genetic inheritance, natural selection, mutation, and sexual reproduction (recombination, or crossover). Along with genetic programming (GP), they are one of the main classes of genetic and evolutionary computation (GEC) methodologies.


2010 ◽  
Vol 439-440 ◽  
pp. 516-521 ◽  
Author(s):  
Luo Lie

A genetic algorithm is a search technique used in computing to find exact or approximate solutions to optimization and search problems. Genetic algorithms are categorized as global search heuristics. Genetic algorithms are a particular class of evolutionary algorithms that use techniques inspired by evolutionary biology such as inheritance, mutation, selection, and crossover.


2018 ◽  
Author(s):  
Steen Lysgaard ◽  
Paul C. Jennings ◽  
Jens Strabo Hummelshøj ◽  
Thomas Bligaard ◽  
Tejs Vegge

A machine learning model is used as a surrogate fitness evaluator in a genetic algorithm (GA) optimization of the atomic distribution of Pt-Au nanoparticles. The machine learning accelerated genetic algorithm (MLaGA) yields a 50-fold reduction of required energy calculations compared to a traditional GA.


2016 ◽  
pp. 1087-1098
Author(s):  
Vinod Kumar Mishra

The genetic algorithm (GA) is an adaptive heuristic search procedures based on the mechanics of natural selection and natural genetics. Inventory control is widely used in the area of mathematical sciences, management sciences; system science, industrial engineering, production engineering etc. but they have wide differences in mathematical and computation maturity. This chapter enables the reader to understand the basic theory of genetic algorithm and how to apply the genetic algorithms for optimizing the parameters in inventory control The current and future trend of the research with the definition of key terms of genetic algorithm has also incorporated in this chapter.


Author(s):  
D T Pham ◽  
Y Yang

Four techniques are described which can help a genetic algorithm to locate multiple approximate solutions to a multi-modal optimization problem. These techniques are: fitness sharing, ‘eliminating’ identical solutions, ‘removing’ acceptable solutions from the reproduction cycle and applying heuristics to improve sub-standard solutions. Essentially, all of these techniques operate by encouraging genetic variety in the potential solution set. The preliminary design of a gearbox is presented as an example to illustrate the effectiveness of the proposed techniques.


2018 ◽  
Author(s):  
Steen Lysgaard ◽  
Paul C. Jennings ◽  
Jens Strabo Hummelshøj ◽  
Thomas Bligaard ◽  
Tejs Vegge

A machine learning model is used as a surrogate fitness evaluator in a genetic algorithm (GA) optimization of the atomic distribution of Pt-Au nanoparticles. The machine learning accelerated genetic algorithm (MLaGA) yields a 50-fold reduction of required energy calculations compared to a traditional GA.


Author(s):  
Tessy Badriyah

K-Means is one of the major algorithms widely used in clustering due to its good computational performance. However, K-Means is very sensitive to the initially selected points which randomly selected, and therefore it does not always generate optimum solutions. Genetic algorithm approach can be applied to solve this problem. In this research we examine the potential of applying hybrid GA- KMeans with focus on the area of health care data. We proposed a new technique using hybrid method combining KMeans Clustering and Genetic Algorithms, called the “Hybrid K-Means Genetic Algorithms” (HKGA). HKGA combines the power of Genetic Algorithms and the efficiency of K-Means Clustering. We compare our results with other conventional algorithms and also with other published research as well. Our results demonstrate that the HKGA achieves very good results and in some cases superior to other methods.Keywords: Machine Learning, K-Means, Genetic Algorithms, Hybrid KMeans Genetic Algorithm (HGKA).


Author(s):  
André L.V. Coelho ◽  
Clodoaldo A.M. Lima ◽  
Fernando J. Von Zuben

A probabilistic learning technique, known as gated mixture of experts (MEs), is made more adaptive by employing a customized genetic algorithm based on the concepts of hierarchical mixed encoding and hybrid training. The objective of such effort is to promote the automatic design (i.e., structural configuration and parameter calibration) of whole gated ME instances more capable to cope with the intricacies of some difficult machine learning problems whose statistical properties are time-variant. In this chapter, we outline the main steps behind such novel hybrid intelligent system, focusing on its application to the nontrivial task of nonlinear time-series forecasting. Experiment results are reported with respect to three benchmarking time-series problems, and confirmed our expectation that the new integrated approach is capable to outperform, both in terms of accuracy and generalization, other conventional approaches, such as single neural networks and non-adaptive, handcrafted gated MEs.


2016 ◽  
pp. 1184-1228 ◽  
Author(s):  
Bhupesh Kumar Singh

Genetic Algorithm (GA) (a structured framework of metaheauristics) has been used in various tasks such as search optimization and machine learning. Theoretically, there should be sound framework for genetic algorithms which can interpret/explain the various facts associated with it. There are various theories of the working of GA though all are subject to criticism. Hence an approach is being adopted that the legitimate theory of GA must be able to explain the learning process (a special case of the successive approximation) of GA. The analytical method of approximating some known function is expanding a complicated function an infinite series of terms containing some simpler (or otherwise useful) function. These infinite approximations facilitate the error to be made arbitrarily small by taking a progressive greater number of terms into consideration. The process of learning in an unknown environment, the form of function to be learned is known only by its form over the observation space. The problem of learning the possible form of the function is termed as experience problem. Various learning paradigms have ensured their legitimacy through the rigid space interpretation of the concentration of measure and Dvoretzky theorem. Hence it is being proposed that the same criterion should be applied to explain the learning capability of GA, various formalisms of explaining the working of GA should be evaluated by applying the criteria, and that learning capability can be used to demonstrate the probable capability of GA to perform beyond the limit cast by the No Free Lunch Theorem.


Author(s):  
M. Ghassan Fattah ◽  
Rosnani Ginting

PT. AAA dari bulan Januari sampai Desember mendapat total 88 order dengan jumlah keterlambatan 12 order maka persentase keterlembatan adalah 13,63%. Tujuan penelitian ini adalah untuk merancangan penerapan algoritma genetik yang dapat menghindari keterlambatan order yaitu untuk mengukur makespan produk dan merancang urutan penjadwalan mesin. Penyelesaian masalah penjadwakan dengan algoritma genetik. Algoritma genetik merupakan teknik search stochastic yang berdasarkan mekanisme seleksi alam dan genetika natural dengan melakukan proses inisialisasi awal lalu dicari nilai fitness dari setiap individu, yang akan menjadi induk adalah yang memiliki nilai fitness terbaik lalu dilakukan proses penyilangan dan mutasi dan pemilihan waktu optimal. Dari hasil perhitungan dengan menggunakan metode Algoritma Genetika diperoleh urutan penjadwalan mesin terbaik dan dengan nilai makespan terkecil.   PT. AAA from January to December received a total of 88 orders with the number of delays of 12 orders, the percentage of bridges was 13.63%. The purpose of this study is to design the application of a genetic algorithm that can avoid delay in order to measure product makespan and design the order of machine scheduling. Resolving scheduling problems with genetic algorithms. Genetic algorithm is a search stochastic technique that is based on the mechanism of natural selection and natural genetics by carrying out the initial initialization process and then looks for the fitness value of each individual, who will be the parent who has the best fitness value and then the process of crossing and mutation and optimal timing. From the results of calculations using the Genetic Algorithm method, the best sequence of machine scheduling is obtained and with the smallest makespan value.


Sign in / Sign up

Export Citation Format

Share Document