Grid Computing in 3D Electron Microscopy Reconstruction

Author(s):  
J.R. Bilbao Castro ◽  
I. Garcia Fernandez ◽  
J. Fernandez

Three-dimensional electron microscopy allows scientists to study biological specimens and to understand how they behave and interact with each other depending on their structural conformation. Electron microscopy projections of the specimens are taken from different angles and are processed to obtain a virtual three-dimensional reconstruction for further studies. Nevertheless, the whole reconstruction process, which is composed of many different subtasks from the microscope to the reconstructed volume, is not straightforward nor cheap in terms of computational costs. Different computing paradigms have been applied in order to overcome such high costs. While classic parallel computing using mainframes and clusters of workstations is usually enough for average requirements, there are some tasks which would fit better into a different computing paradigm – such as grid computing. Such tasks can be split up into a myriad of subtasks, which can then be run independently using as many computational resources as are available. This chapter explores two of these tasks present in a typical three-dimensional electron microscopy reconstruction process. In addition, important aspects like fault-tolerance are widely covered; given that the distributed nature of a grid infrastructure makes it inherently unstable and difficult to predict.

2012 ◽  
pp. 881-898
Author(s):  
J.R. Bilbao-Castro ◽  
I. García ◽  
J.J. Fernández

Three-dimensional electron microscopy allows scientists to study biological specimens and to understand how they behave and interact with each other depending on their structural conformation. Electron microscopy projections of the specimens are taken from different angles and are processed to obtain a virtual three-dimensional reconstruction for further studies. Nevertheless, the whole reconstruction process, which is composed of many different subtasks from the microscope to the reconstructed volume, is not straightforward nor cheap in terms of computational costs. Different computing paradigms have been applied in order to overcome such high costs. While classic parallel computing using mainframes and clusters of workstations is usually enough for average requirements, there are some tasks which would fit better into a different computing paradigm – such as grid computing. Such tasks can be split up into a myriad of subtasks, which can then be run independently using as many computational resources as are available. This chapter explores two of these tasks present in a typical three-dimensional electron microscopy reconstruction process. In addition, important aspects like fault-tolerance are widely covered; given that the distributed nature of a grid infrastructure makes it inherently unstable and difficult to predict.


1976 ◽  
Vol 31 (6) ◽  
pp. 645-655 ◽  
Author(s):  
W. Hoppe ◽  
H. J. Schramm ◽  
M. Sturm ◽  
N. Hunsmann ◽  
J. Gaßmann

In this paper methods and results of three-dimensional electron microscopy of individual molecules will be presented. Part I describes the general experimental and theoretical methods (microgoniometer, measuring scheme, two-dimensional and three-dimensional reconstruction, determination of the common origin of the projections). Special attention will be given to the image point shapes under different reconstruction conditions


2004 ◽  
Vol 14 (02) ◽  
pp. 151-162 ◽  
Author(s):  
J. R. Bilbao-Castro ◽  
R. Marabini ◽  
J. M. Carazo ◽  
I. Garcia ◽  
J. J. Fernandez

This article describes a potential application of grid computing in structural biology. Three-dimensional electron microscopy allows the investigation of biological structures over a wide range of sizes, from cells to single macromolecules. Knowledge of the structure is critical to understanding the function of biological specimens. However, high resolution structure determination is computationally intensive. This contribution analyzes the potential benefits of grid computing in this field, and draws the conclusion that there are excellent opportunities to take advantage of computational grids.


Author(s):  
Gregory J. Czarnota

Chromatin structure at the fundamental level of the nucleosome is important in vital cellular processes. Recent biochemical and genetic analyses show that nucleosome structure and structural changes are very active participants in gene expression, facilitating or inhibiting transcription and reflecting the physiological state of the cell. Structural states and transitions for this macromolecular complex, composed of DNA wound about a heterotypic octamer of variously modified histone proteins, have been measured by physico-chemical techniques and by enzyme-accessibility and are recognized to occur with various post-translational modifications, gene activation, transformation and with ionic-environment. In spite of studies which indicate various forms of nucleosome structure, all current x-ray and neutron diffraction studies have consistently resulted in only one structure, suggestive of a static conformation. In contrast, two-dimensional electron microscopy studies and three-dimensional reconstruction techniques have yielded different structures. These fundamental differences between EM and other ultrastructural studies have created a long standing quandary, which I have addressed and resolved using spectroscopic electron microscopy and statistical analyses of nucleosome images in a study of nucleosome structure with ionic environment.


Author(s):  
Nicolas Boisset ◽  
Jean-Christophe Taveau ◽  
Jean Lamy ◽  
Terence Wagenknecht ◽  
Michael Radermacher ◽  
...  

Hemocyanin, the respiratory pigment of the scorpion Androctonus australis is composed of 24 kidney shaped subunits. A model of architecture supported by many indirect arguments has been deduced from electron microscopy (EM) and immuno-EM. To ascertain, the disposition of the subunits within the oligomer, the 24mer was submitted to three-dimensional reconstruction by the method of single-exposure random-conical tilt series.A sample of native hemocyanin, prepared with the double layer negative staining technique, was observed by transmisson electron microscopy under low-dose conditions. Six 3D-reconstructions were carried out indenpendently from top, side and 45°views. The results are composed of solid-body surface representations, and slices extracted from the reconstruction volume.The main two characters of the molecule previously reported by Van Heel and Frank, were constantly found in the solid-body surface representations. These features are the presence of two different faces called flip and flop and a rocking of the molecule around an axis passing through diagonnally opposed hexamers. Furthermore, in the solid-body surface of the top view reconstruction, the positions and orientations of the bridges connecting the half molecules were found in excellent agreement with those predicted by the model.


2001 ◽  
Vol 134 (1) ◽  
pp. 35-45 ◽  
Author(s):  
Kouta Mayanagi ◽  
Tomoko Miyata ◽  
Takuji Oyama ◽  
Yoshizumi Ishino ◽  
Kosuke Morikawa

Sign in / Sign up

Export Citation Format

Share Document