scholarly journals Three-Dimensional Reconstruction of Protein Kinase C-delta and Its Regulatory Domain by Electron Microscopy of Two-Dimensional Crystals

2005 ◽  
Vol 11 (S02) ◽  
Author(s):  
A S Solodukhin ◽  
R H Kretsinger ◽  
J J Sando
2009 ◽  
Vol 44 (3) ◽  
pp. 155-169 ◽  
Author(s):  
Avraham I Jacob ◽  
Miriam Horovitz-Fried ◽  
Shlomit Aga-Mizrachi ◽  
Tamar Brutman-Barazani ◽  
Hana Okhrimenko ◽  
...  

Protein kinase C delta (PKCδ) is induced by insulin to rapidly associate with insulin receptor (IR) and upregulates insulin signaling. We utilized specific JM and CT receptor domains and chimeras of PKCα and PKCδ regulatory and catalytic domains to elucidate which components of PKCδ are responsible for positive regulatory effects of PKCδ on IR signaling. Studies were performed on L6 and L8 skeletal muscle myoblasts and myotubes. PKCδ was preferentially bound to the JM domain of IR, and insulin stimulation increased this binding. Both PKCδ/α and PKCα/δ chimeras (regulatory/catalytic) were bound preferentially to the JM but not to the CT domain of IR. Although IR–PKCδ binding was higher in cells expressing either the PKCδ/α or PKCα/δ chimera than in control cells, upregulation of IR signaling was observed only in PKCδ/α cells. Thus, in response to insulin increases in tyrosine phosphorylation of IR and insulin receptor substrate-1, downstream signaling to protein kinase B and glycogen synthase kinase 3 (GSK3) and glucose uptake were greater in cells overexpressing PKCδ/α and the PKCδ/δ domains than in cells expressing the PKCα/δ domains. Basal binding of Src to PKCδ was higher in both PKCδ/α- and PKCα/δ-expressing cells compared to control. Binding of Src to IR was decreased in PKCα/δ cells but remained elevated in the PKCδ/α cells in response to insulin. Finally, insulin increased Src activity in PKCδ/α-expressing cells but decreased it in PKCα/δ-expressing cells. Thus, the regulatory domain of PKCδ via interaction with Src appears to determine the role of PKCδ as a positive regulator of IR signaling in skeletal muscle.


Author(s):  
D. E. Johnson ◽  
J. Pfeifer

Greatly increased specimen penetration, which is the principle advantage of high voltage electron microscopy, carries with it an increased need for techniques to interpret the large amount of three-dimensional information projected into two-dimensional micrographs. Stereo views can provide very useful information and are widely used. However, for the general specimen, stereo views are limited in their ability to produce quantitative results. At the high voltage microscope facility, Univ. of Wisconsin, we have begun a program to develop and apply three dimensional reconstruction techniques to the microscopy of thick specimens.


2007 ◽  
Vol 19 (10) ◽  
pp. 2035-2045 ◽  
Author(s):  
Alexander S. Solodukhin ◽  
Robert H. Kretsinger ◽  
Julianne J. Sando

Author(s):  
Nicolas Boisset ◽  
Jean-Christophe Taveau ◽  
Jean Lamy ◽  
Terence Wagenknecht ◽  
Michael Radermacher ◽  
...  

Hemocyanin, the respiratory pigment of the scorpion Androctonus australis is composed of 24 kidney shaped subunits. A model of architecture supported by many indirect arguments has been deduced from electron microscopy (EM) and immuno-EM. To ascertain, the disposition of the subunits within the oligomer, the 24mer was submitted to three-dimensional reconstruction by the method of single-exposure random-conical tilt series.A sample of native hemocyanin, prepared with the double layer negative staining technique, was observed by transmisson electron microscopy under low-dose conditions. Six 3D-reconstructions were carried out indenpendently from top, side and 45°views. The results are composed of solid-body surface representations, and slices extracted from the reconstruction volume.The main two characters of the molecule previously reported by Van Heel and Frank, were constantly found in the solid-body surface representations. These features are the presence of two different faces called flip and flop and a rocking of the molecule around an axis passing through diagonnally opposed hexamers. Furthermore, in the solid-body surface of the top view reconstruction, the positions and orientations of the bridges connecting the half molecules were found in excellent agreement with those predicted by the model.


Author(s):  
J.L. Carrascosa ◽  
G. Abella ◽  
S. Marco ◽  
M. Muyal ◽  
J.M. Carazo

Chaperonins are a class of proteins characterized by their role as morphogenetic factors. They trantsiently interact with the structural components of certain biological aggregates (viruses, enzymes etc), promoting their correct folding, assembly and, eventually transport. The groEL factor from E. coli is a conspicuous member of the chaperonins, as it promotes the assembly and morphogenesis of bacterial oligomers and/viral structures.We have studied groEL-like factors from two different bacteria:E. coli and B.subtilis. These factors share common morphological features , showing two different views: one is 6-fold, while the other shows 7 morphological units. There is also a correlation between the presence of a dominant 6-fold view and the fact of both bacteria been grown at low temperature (32°C), while the 7-fold is the main view at higher temperatures (42°C). As the two-dimensional projections of groEL were difficult to interprete, we studied their three-dimensional reconstruction by the random conical tilt series method from negatively stained particles.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 2133-P
Author(s):  
NIKKI L. FARNSWORTH ◽  
ROBERT A. PISCOPIO ◽  
RICHARD K. BENNINGER

Sign in / Sign up

Export Citation Format

Share Document