CRISS

Author(s):  
John Nicholson ◽  
Vladimir Kulyukin

Limited sensory information about a new environment often requires people with a visual impairment to rely on sighted guides for showing or describing routes around the environment. However, route descriptions provided by other blind independent navigators, (e.g., over a cell phone), can also be used to guide a traveler along a previously unknown route. A visually impaired guide can often describe a route as well or better than a sighted person since the guide is familiar with the issues of blind navigation. This chapter introduces a Collaborative Route Information Sharing System (CRISS). CRISS is a collaborative online environment where visually impaired and sighted people will be able to share and manage route descriptions for indoor and outdoor environments. It then describes the system’s Route Analysis Engine module which takes advantage of information extraction techniques to find landmarks in natural language route descriptions written by independent blind navigators.

2020 ◽  
Vol 10 (2) ◽  
pp. 523
Author(s):  
Santiago Real ◽  
Alvaro Araujo

In this paper, the Virtually Enhanced Senses (VES) System is described. It is an ARCore-based, mixed-reality system meant to assist blind and visually impaired people’s navigation. VES operates in indoor and outdoor environments without any previous in-situ installation. It provides users with specific, runtime-configurable stimuli according to their pose, i.e., position and orientation, and the information of the environment recorded in a virtual replica. It implements three output data modalities: Wall-tracking assistance, acoustic compass, and a novel sensory substitution algorithm, Geometry-based Virtual Acoustic Space (GbVAS). The multimodal output of this algorithm takes advantage of natural human perception encoding of spatial data. Preliminary experiments of GbVAS have been conducted with sixteen subjects in three different scenarios, demonstrating basic orientation and mobility skills after six minutes training.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Charalampos Saitis ◽  
Mohammad Zavid Parvez ◽  
Kyriaki Kalimeri

Reliable detection of cognitive load would benefit the design of intelligent assistive navigation aids for the visually impaired (VIP). Ten participants with various degrees of sight loss navigated in unfamiliar indoor and outdoor environments, while their electroencephalogram (EEG) and electrodermal activity (EDA) signals were being recorded. In this study, the cognitive load of the tasks was assessed in real time based on a modification of the well-established event-related (de)synchronization (ERD/ERS) index. We present an in-depth analysis of the environments that mostly challenge people from certain categories of sight loss and we present an automatic classification of the perceived difficulty in each time instance, inferred from their biosignals. Given the limited size of our sample, our findings suggest that there are significant differences across the environments for the various categories of sight loss. Moreover, we exploit cross-modal relations predicting the cognitive load in real time inferring on features extracted from the EDA. Such possibility paves the way for the design on less invasive, wearable assistive devices that take into consideration the well-being of the VIP.


2009 ◽  
Vol 18 (03) ◽  
pp. 379-397 ◽  
Author(s):  
JAMES COUGHLAN ◽  
ROBERTO MANDUCHI

We describe a wayfinding system for blind and visually impaired persons that uses a camera phone to determine the user's location with respect to color markers, posted at locations of interest (such as offices), which are automatically detected by the phone. The color marker signs are specially designed to be detected in real time in cluttered environments using computer vision software running on the phone; a novel segmentation algorithm quickly locates the borders of the color marker in each image, which allows the system to calculate how far the marker is from the phone. We present a model of how the user's scanning strategy (i.e. how he/she pans the phone left and right to find color markers) affects the system's ability to detect color markers given the limitations imposed by motion blur, which is always a possibility whenever a camera is in motion. Finally, we describe experiments with our system tested by blind and visually impaired volunteers, demonstrating their ability to reliably use the system to find locations designated by color markers in a variety of indoor and outdoor environments, and elucidating which search strategies were most effective for users.


Author(s):  
Brandon K Hopkins ◽  
Priyadarshini Chakrabarti ◽  
Hannah M Lucas ◽  
Ramesh R Sagili ◽  
Walter S Sheppard

Abstract Global decline in insect pollinators, especially bees, have resulted in extensive research into understanding the various causative factors and formulating mitigative strategies. For commercial beekeepers in the United States, overwintering honey bee colony losses are significant, requiring tactics to overwinter bees in conditions designed to minimize such losses. This is especially important as overwintered honey bees are responsible for colony expansion each spring, and overwintered bees must survive in sufficient numbers to nurse the spring brood and forage until the new ‘replacement’ workers become fully functional. In this study, we examined the physiology of overwintered (diutinus) bees following various overwintering storage conditions. Important physiological markers, i.e., head proteins and abdominal lipid contents were higher in honey bees that overwintered in controlled indoor storage facilities, compared with bees held outdoors through the winter months. Our findings provide new insights into the physiology of honey bees overwintered in indoor and outdoor environments and have implications for improved beekeeping management.


2021 ◽  
Vol 11 (4) ◽  
pp. 1902
Author(s):  
Liqiang Zhang ◽  
Yu Liu ◽  
Jinglin Sun

Pedestrian navigation systems could serve as a good supplement for other navigation methods or for extending navigation into areas where other navigation systems are invalid. Due to the accumulation of inertial sensing errors, foot-mounted inertial-sensor-based pedestrian navigation systems (PNSs) suffer from drift, especially heading drift. To mitigate heading drift, considering the complexity of human motion and the environment, we introduce a novel hybrid framework that integrates a foot-state classifier that triggers the zero-velocity update (ZUPT) algorithm, zero-angular-rate update (ZARU) algorithm, and a state lock, a magnetic disturbance detector, a human-motion-classifier-aided adaptive fusion module (AFM) that outputs an adaptive heading error measurement by fusing heuristic and magnetic algorithms rather than simply switching them, and an error-state Kalman filter (ESKF) that estimates the optimal systematic error. The validation datasets include a Vicon loop dataset that spans 324.3 m in a single room for approximately 300 s and challenging walking datasets that cover large indoor and outdoor environments with a total distance of 12.98 km. A total of five different frameworks with different heading drift correction methods, including the proposed framework, were validated on these datasets, which demonstrated that our proposed ZUPT–ZARU–AFM–ESKF-aided PNS outperforms other frameworks and clearly mitigates heading drift.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 359
Author(s):  
Ewa Brągoszewska

The Atmosphere Special Issue entitled “Health Effects and Exposure Assessment to Bioaerosols in Indoor and Outdoor Environments” comprises five original papers [...]


Sign in / Sign up

Export Citation Format

Share Document