A Case Study of Ontology-Driven Development of Intelligent Educational Systems

Author(s):  
Gordon Deline ◽  
Fuhua Lin ◽  
Dunwei Wen ◽  
Dragan Gaševic ◽  
Kinshuk N/A

This article presents a case study of ontology-driven development of intelligent educational systems. Following a review of literature related to ontology development, ontology-driven software development, and traditional software engineering, we developed an ontology-driven software development methodology appropriate for intelligent ontology-driven systems which have ontologies as key execution components, such as e-Advisor, and which is biased toward an integration of incremental and iterative ontology development and downstream Model Driven Architecture for development of software components.

Author(s):  
Janis Osis ◽  
Erika Asnina

Experts' opinions exist that the way software is built is primitive. The role of modeling as a treatment for Software Engineering (SE) became more important after the appearance of Model-Driven Architecture (MDA). The main advantage of MDA is architectural separation of concerns that showed the necessity of modeling and opened the way for Software Development (SD) to become engineering. However, this principle does not demonstrate its whole potential power in practice, because of a lack of mathematical accuracy in the initial steps of SD. The question about the sufficiency of modeling in SD is still open. The authors believe that SD, in general, and modeling, in particular, based on mathematical formalism in all its stages together with the implemented principle of architectural separation of concerns can become an important part of SE in its real sense. They introduce such mathematical formalism by means of topological modeling of system functioning.


2018 ◽  
pp. 310-327
Author(s):  
Janis Osis ◽  
Erika Asnina

Experts' opinions exist that the way software is built is primitive. The role of modeling as a treatment for Software Engineering (SE) became more important after the appearance of Model-Driven Architecture (MDA). The main advantage of MDA is architectural separation of concerns that showed the necessity of modeling and opened the way for Software Development (SD) to become engineering. However, this principle does not demonstrate its whole potential power in practice, because of a lack of mathematical accuracy in the initial steps of SD. The question about the sufficiency of modeling in SD is still open. The authors believe that SD, in general, and modeling, in particular, based on mathematical formalism in all its stages together with the implemented principle of architectural separation of concerns can become an important part of SE in its real sense. They introduce such mathematical formalism by means of topological modeling of system functioning.


Author(s):  
Ersin Er ◽  
Bedir Tekinerdogan

Model-Driven Software Development (MDSD) aims to support the development and evolution of software intensive systems using the basic concepts of model, metamodel, and model transformation. In parallel with the ongoing academic research, MDSD is more and more applied in industrial practices. Like conventional non-MDSD practices, MDSD systems are also subject to changing requirements and have to cope with evolution. In this chapter, the authors provide a scenario-based approach for documenting and analyzing the impact of changes that apply to model-driven development systems. To model the composition and evolution of an MDSD system, they developed the so-called Model-Driven Software Evolution Language (MoDSEL) which is based on a megamodel for MDSD. MoDSEL includes explicit language abstractions to specify both the model elements of an MDSD system and the evolution scenarios that might apply to model elements. Based on MoDSEL specifications, an impact analysis is performed to assess the impact of evolution scenarios and the sensitivity of model elements. A case study is provided to show different kind of evolution scenarios and the required adaptations to model elements.


Author(s):  
Janis Osis ◽  
Erika Nazaruka (Asnina)

Some experts opine that software is built in a primitive way. The role of modeling as a treatment for the weakness of software engineering became more important when the principles of Model Driven Architecture (MDA) appeared. Its main advantage is architectural separation of concerns. It showed the necessity of modeling and opened the way for software development to become an engineering discipline. However, this principle does not demonstrate its whole potential power in practice because of lack of mathematical accuracy in the very initial steps of software development. The sufficiency of modeling in software development is still disputable. The authors believe that software development in general (and modeling in particular) based on mathematical formalism in all of its stages and together with the implemented principle of architectural separation of concerns can become an important part of software engineering in its real sense. They propose the formalism by topological modeling of system functioning as the first step towards engineering.


Author(s):  
MICHAEL N. HUHNS

This paper describes a new approach to the production of robust software. We first motivate the approach by explaining why the two major goals of software engineering — correct software and reusable software — are not being addressed by the current state of software practice. We then describe a methodology based on active, cooperative, and persistent software components, i.e., agents, and show how the methodology produces robust and reusable software. We derive requirements for the structure and behavior of the agents, and report on preliminary experiments on applications based on the methodology. We conclude with a roadmap for development of the methodology and ruminations about uses for the new computational paradigm.


Author(s):  
Andreza Vieira ◽  
Franklin Ramalho

The Model-Driven Development (MDD) approach shifts the focus on code to models in the software development process. In MDD, model transformations are elements that play an important role. MDD-based projects evolve along their lifecycle in a way that changes in their transformations are frequent. Before applying changes it is important to measure their impacts within the transformation. However, currently no technique helps practitioners in this direction. We propose an approach to measure the change impact in ATL model transformations. Based on static analysis, it detects the elements impacted by a change and calculates the change impact value through three metrics we defined. By using our approach, practitioners can (i) save effort and development time since the elements impacted with the change are automatically detected and (ii) better schedule and prioritize changes according to the impact value. To empirically evaluate our approach we conducted a case study.


Sign in / Sign up

Export Citation Format

Share Document