Optimal Model Parameters of Inverse Kinematics Solution of a 3R Robotic Manipulator Using ANN Models

Author(s):  
Nikolaos E. Karkalos ◽  
Angelos P. Markopoulos ◽  
Michael F. Dossis

Solution of inverse kinematics equations of robotic manipulators constitutes usually a demanding problem, which is also required to be resolved in a time-efficient way to be appropriate for actual industrial applications. During the last few decades, soft computing models such as Artificial Neural Networks (ANN) models were employed for the inverse kinematics problem and are considered nowadays as a viable alternative method to other analytical and numerical methods. In the current paper, the solution of inverse kinematics equations of a planar 3R robotic manipulator using ANN models is presented, an investigation concerning optimum values of ANN model parameters, namely input data sample size, network architecture and training algorithm is conducted and conclusions concerning models performance in these cases are drawn.

Author(s):  
Nikolaos E. Karkalos ◽  
Angelos P. Markopoulos ◽  
Michael F. Dossis

Solution of inverse kinematics equations of robotic manipulators constitutes usually a demanding problem, which is also required to be resolved in a time-efficient way to be appropriate for actual industrial applications. During the last few decades, soft computing models such as Artificial Neural Networks (ANN) models were employed for the inverse kinematics problem and are considered nowadays as a viable alternative method to other analytical and numerical methods. In the current paper, the solution of inverse kinematics equations of a planar 3R robotic manipulator using ANN models is presented, an investigation concerning optimum values of ANN model parameters, namely input data sample size, network architecture and training algorithm is conducted and conclusions concerning models performance in these cases are drawn.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Aref M. al-Swaidani ◽  
Waed T. Khwies

Numerous volcanic scoria (VS) cones are found in many places worldwide. Many of them have not yet been investigated, although few of which have been used as a supplementary cementitious material (SCM) for a long time. The use of natural pozzolans as cement replacement could be considered as a common practice in the construction industry due to the related economic, ecologic, and performance benefits. In the current paper, the effect of VS on the properties of concrete was investigated. Twenty-one concrete mixes with three w/b ratios (0.5, 0.6, and 0.7) and seven replacement levels of VS (0%, 10%, 15%, 20%, 25%, 30%, and 35%) were produced. The investigated concrete properties were the compressive strength, the water permeability, and the concrete porosity. Artificial neural networks (ANNs) were used for prediction of the investigated properties. Feed-forward backpropagation neural networks have been used. The ANN models have been established by incorporation of the laboratory experimental data and by properly choosing the network architecture and training processes. This study shows that the use of ANN models provided a more accurate tool to capture the effects of five parameters (cement content, volcanic scoria content, water content, superplasticizer content, and curing time) on the investigated properties. This prediction makes it possible to design VS-based concretes for a desired strength, water impermeability, and porosity at any given age and replacement level. Some correlations between the investigated properties were derived from the analysed data. Furthermore, the sensitivity analysis showed that all studied parameters have a strong effect on the investigated properties. The modification of the microstructure of VS-based cement paste has been observed, as well.


The use of robotics is to improvise and simplify human life. Robotic manipulators have been around for a while now and are being used in many different sectors such as industries, households, warehouses, medicine etc. Solving of inverse kinematics is one of the most complex issues faced while designing the robotic manipulator. In this research a Deep Artificial neural network (D-ANN) model is proposed to solve inverse kinematics of a 5-axis robotic manipulator with rotary joints. The D-ANN model is trained in MATLAB. Training dataset was generated using forward kinematics equations obtained easily from transformation matrix of the robotic manipulator. To validate predictions made by this model an experimental robotic arm manipulator Is fabricated. A smart camera setup has been linked to MATLAB for real time image processing and calculating the deviation of the end needle in reaching the desired target coordinate. The trained model yielded satisfactory results with ±0.03 radians error and this was also validated experimentally. This research will help the robotic manipulator reach the desired target coordinates even when one does not have enough input data.Paper Setup must be in A4 size with Margin: Top 0.7”, Bottom 0.7”, Left 0.65”, 0.65”, Gutter 0”, and Gutter Position Top. Paper must be in two Columns after Authors Name with Width 8.27”, height 11.69” Spacing 0.2”. Whole paper must be with: Font Name Times New Roman, Font Size 10, Line Spacing 1.05 EXCEPT Abstract, Keywords (Index Term), Paper Tile, References, Author Profile (in the last page of the paper, maximum 400 words), All Headings, and Manuscript Details (First Page, Bottom, left side).


Robotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 127
Author(s):  
Aryslan Malik ◽  
Troy Henderson ◽  
Richard Prazenica

This work is aimed to demonstrate a multi-objective joint trajectory generation algorithm for a 7 degree of freedom (DoF) robotic manipulator using swarm intelligence (SI)—product of exponentials (PoE) combination. Given a priori knowledge of the end-effector Cartesian trajectory and obstacles in the workspace, the inverse kinematics problem is tackled by SI-PoE subject to multiple constraints. The algorithm is designed to satisfy finite jerk constraint on end-effector, avoid obstacles, and minimize control effort while tracking the Cartesian trajectory. The SI-PoE algorithm is compared with conventional inverse kinematics algorithms and standard particle swarm optimization (PSO). The joint trajectories produced by SI-PoE are experimentally tested on Sawyer 7 DoF robotic arm, and the resulting torque trajectories are compared.


2016 ◽  
Vol 19 (2) ◽  
pp. 114-120 ◽  
Author(s):  
Khoi Nguyen Dao ◽  
Phuong Ai Huynh

In this study, artificial neural network (ANN) model was used to simulate the streamflow in the Srepok watershed, Vietnam. Correlation analysis of time series for precipitation and streamflow was employed to determine input data for the ANN model. This result indicated a significant correlation up to 2 day time lag and 1 day time lag for the precipitation and streamflow series data, respectively. According to the correlation analysis, three ANN models including ANN1, ANN2, and ANN3 were investigated. A 3-year data record for the precipitation and streamflow was used for ANN training and testing. The result of ANN training and testing showed that the ANN2 with 3 input data (P(t), P(t-1), and Q(t- 1)) gave the best simulation (NSE = 0.95 for training period and NSE = 0.96 for testing period) comparing to those of ANN1 and ANN3. In addition, the comparison of ANNs showed that the increase of the input data did not offer the better result.


10.29007/tvb3 ◽  
2018 ◽  
Author(s):  
Il Won Seo ◽  
Se Hun Yun

In this study, an enhanced ANN model was developed to analyze the water quality variation at the river confluence by incorporating the resilient propagation algorithm to increase the model accuracy. An ensemble modeling with stratified sampling method was also developed in order to reduce the influence of the input data and model parameters on the prediction of river water quality. The water quality parameters such as pH, electric conductivity (EC), DO and chlorophyll-a, were predicted using proposed ANN model in the large river which is affected by pollutant inputs from the tributary river. The results of model simulation showed that the pollutant input from the tributary affected the water quality of the mainstream. The model prediction using water quality data of the tributary river as the input data in addition to the mainstream data produced better results than the simulation using mainstream data only, especially for EC and DO, R2 value was improved by 30.9% and 20.6%, respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhonghui Thong ◽  
Jolena Ying Ying Tan ◽  
Eileen Shuzhen Loo ◽  
Yu Wei Phua ◽  
Xavier Liang Shun Chan ◽  
...  

AbstractRegression models are often used to predict age of an individual based on methylation patterns. Artificial neural network (ANN) however was recently shown to be more accurate for age prediction. Additionally, the impact of ethnicity and sex on our previous regression model have not been studied. Furthermore, there is currently no age prediction study investigating the lower limit of input DNA at the bisulfite treatment stage prior to pyrosequencing. Herein, we evaluated both regression and ANN models, and the impact of ethnicity and sex on age prediction for 333 local blood samples using three loci on the pyrosequencing platform. Subsequently, we trained a one locus-based ANN model to reduce the amount of DNA used. We demonstrated that the ANN model has a higher accuracy of age prediction than the regression model. Additionally, we showed that ethnicity did not affect age prediction among local Chinese, Malays and Indians. Although the predicted age of males were marginally overestimated, sex did not impact the accuracy of age prediction. Lastly, we present a one locus, dual CpG model using 25 ng of input DNA that is sufficient for forensic age prediction. In conclusion, the two ANN models validated would be useful for age prediction to provide forensic intelligence leads.


Sign in / Sign up

Export Citation Format

Share Document