Protection of Information From the Influence of Noise on the Transmission of Video Data in a Geoinformation System

Author(s):  
Olga Galan

The chapter describes parallel-hierarchical technologies that are characterized by a high degree of parallelism, high performance, noise immunity, parallel-hierarchical mode of transmission and processing of information. The peculiarities of the design of automated geoinformation and energy systems on the basis of parallel-hierarchical technologies and modified confidential method of Q-transformation of information are presented. Experimental analysis showed the advantages of the proposed methods of image processing and extraction of characteristic features.

Author(s):  
Ruslan Leonidovich Motornyuk ◽  
Stepan Mykolayovych Bilan

Methods for image identification based on the Radon transform using hexagonal-coated cellular automata in the chapter are considered. A method and a mathematical model for the detection of moving objects based on hexagonal-coated cellular automata are described. The advantages of using hexagonal coverage for detecting moving objects in the image are shown. The technique of forming Radon projections for moving regions in the image, which is designed for a hexagonal-coated cellular automata, is described. The software and hardware implementation of the developed methods are presented. Based on the obtained results, a hexagonal-coated cellular automata was developed to identify images of objects based on the Radon transform. The Radon transform allowed to effectively extract the characteristic features of images with a large percentage of noise. Experimental analysis showed the advantages of the proposed methods of image processing and identification of moving objects.


Author(s):  
Ruslan Leonidovich Motornyuk ◽  
Stepan Mykolayovych Bilan

The chapter describes a brief history of the emergence of the theory of cellular automata, their main properties, and methods for constructing. The image skeletonization methods based on the Euler zero differential are described. The advantages of using hexagonal coverage for detecting moving objects in the image are shown. The software and hardware implementation of the developed methods are presented. Based on the obtained results, a hexagonal-coated cellular automata was developed to identify images of objects based on the Radon transform. The method and mathematical model of the selection of characteristic features for the selection of the skeleton and implementation on cellular automata with a hexagonal coating are described. The Radon transform allowed to effectively extract the characteristic features of images with a large percentage of noise. An experiment for different images with different noises was conducted. Experimental analysis showed the advantages of the proposed methods of image processing and extraction of characteristic features.


2012 ◽  
Vol 17 (4) ◽  
pp. 207-216 ◽  
Author(s):  
Magdalena Szymczyk ◽  
Piotr Szymczyk

Abstract The MATLAB is a technical computing language used in a variety of fields, such as control systems, image and signal processing, visualization, financial process simulations in an easy-to-use environment. MATLAB offers "toolboxes" which are specialized libraries for variety scientific domains, and a simplified interface to high-performance libraries (LAPACK, BLAS, FFTW too). Now MATLAB is enriched by the possibility of parallel computing with the Parallel Computing ToolboxTM and MATLAB Distributed Computing ServerTM. In this article we present some of the key features of MATLAB parallel applications focused on using GPU processors for image processing.


Author(s):  
Hiroshi Yamamoto ◽  
Yasufumi Nagai ◽  
Shinichi Kimura ◽  
Hiroshi Takahashi ◽  
Satoko Mizumoto ◽  
...  

2021 ◽  
Vol 11 (15) ◽  
pp. 7115
Author(s):  
Chul-Ho Kim ◽  
Min-Kyeong Park ◽  
Won-Hee Kang

The purpose of this study was to provide a guideline for the selection of technologies suitable for ASHRAE international climate zones when designing high-performance buildings. In this study, high-performance technologies were grouped as passive, active, and renewable energy systems. Energy saving technologies comprising 15 cases were categorized into passive, active, and renewable energy systems. EnergyPlus v9.5.0 was used to analyze the contribution of each technology in reducing the primary energy consumption. The energy consumption of each system was analyzed in different climates (Incheon, New Delhi, Minneapolis, Berlin), and the detailed contributions to saving energy were evaluated. Even when the same technology is applied, the energy saving rate differs according to the climatic characteristics. Shading systems are passive systems that are more effective in hot regions. In addition, the variable air volume (VAV) system, combined VAV–energy recovery ventilation (ERV), and combined VAV–underfloor air distribution (UFAD) are active systems that can convert hot and humid outdoor temperatures to create comfortable indoor environments. In cold and cool regions, passive systems that prevent heat loss, such as high-R insulation walls and windows, are effective. Active systems that utilize outdoor air or ventilation include the combined VAV-economizer, the active chilled beam with dedicated outdoor air system (DOAS), and the combined VAV-ERV. For renewable energy systems, the ground source heat pump (GSHP) is more effective. Selecting energy saving technologies that are suitable for the surrounding environment, and selecting design strategies that are appropriate for a given climate, are very important for the design of high-performance buildings globally.


2013 ◽  
Vol 21 (3) ◽  
pp. 552-562
Author(s):  
Hsuan-Chun Liao ◽  
Mochamad Asri ◽  
Tsuyoshi Isshiki ◽  
Dongju Li ◽  
Hiroaki Kunieda

Sign in / Sign up

Export Citation Format

Share Document