Distributed Control of Robot Swarms

2020 ◽  
pp. 1450-1488
Author(s):  
Dimitra Panagou ◽  
Dušan M. Stipanović ◽  
Petros G. Voulgaris

This chapter considers the problem of multi-agent coordination and control under multiple objectives, and presents a set-theoretic formulation which is amenable to Lyapunov-based analysis and control design. A novel class of Lyapunov-like barrier functions is introduced and used to encode multiple control objectives, such as collision avoidance, proximity maintenance and convergence to desired destinations. The construction is based on recentered barrier functions and on maximum approximation functions. Thus, a single Lyapunov-like function is used to encode the constrained set of each agent, yielding simple, gradient-based control solutions. The derived control strategies are distributed, i.e., based on information locally available to each agent, which is dictated by sensing and communication limitations. The proposed coordination protocol dictates semi-cooperative conflict resolution among agents, as well as conflict resolution with respect to an agent (the leader) which is not actively participating in collision avoidance, except when necessary. The considered scenario is pertinent to surveillance tasks and involves nonholonomic vehicles. The efficacy of the approach is demonstrated through simulation results.

Robotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 21 ◽  
Author(s):  
Zhanat Makhataeva ◽  
Huseyin Varol

Augmented reality (AR) is used to enhance the perception of the real world by integrating virtual objects to an image sequence acquired from various camera technologies. Numerous AR applications in robotics have been developed in recent years. The aim of this paper is to provide an overview of AR research in robotics during the five year period from 2015 to 2019. We classified these works in terms of application areas into four categories: (1) Medical robotics: Robot-Assisted surgery (RAS), prosthetics, rehabilitation, and training systems; (2) Motion planning and control: trajectory generation, robot programming, simulation, and manipulation; (3) Human-robot interaction (HRI): teleoperation, collaborative interfaces, wearable robots, haptic interfaces, brain-computer interfaces (BCIs), and gaming; (4) Multi-agent systems: use of visual feedback to remotely control drones, robot swarms, and robots with shared workspace. Recent developments in AR technology are discussed followed by the challenges met in AR due to issues of camera localization, environment mapping, and registration. We explore AR applications in terms of how AR was integrated and which improvements it introduced to corresponding fields of robotics. In addition, we summarize the major limitations of the presented applications in each category. Finally, we conclude our review with future directions of AR research in robotics. The survey covers over 100 research works published over the last five years.


2016 ◽  
pp. 162-176
Author(s):  
Madhav Patil ◽  
Tamer Abukhalil ◽  
Sarosh Patel ◽  
Tarek Sobh

In this work we present the hardware architecture of a mobile heterogeneous robot swarm, designed and implemented at the Interdisciplinary Robotics, Intelligent Sensing and Control (RISC) Laboratory, University of Bridgeport. Most of the recent advances in swarm robotics have mainly focused on homogeneous robot swarms and their applications. Developing and coordinating a multi-agent robot system with heterogeneity and a larger behavioral repertoire is a great challenge. To give swarm hardware heterogeneity we have equipped each swarm robot with different set of sensors, actuators, control and communication units, power supply, and an interconnection mechanism. This paper discusses the hardware heterogeneity of the robotic swarm and its challenges. Another issue addressed in paper is the active power management of the robotic agents. The power consumption of each robot in the UB robot swarm is calculated and the power management technique is also explained in this paper. We applied this heterogeneous robot swarm to perform three sample tasks – Mapping task, human rescue task and wall painting task.


2020 ◽  
Author(s):  
Daniel Poremski ◽  
Sandra Henrietta Subner ◽  
Grace Lam Fong Kin ◽  
Raveen Dev Ram Dev ◽  
Mok Yee Ming ◽  
...  

The Institute of Mental Health in Singapore continues to attempt to prevent the introduction of COVID-19, despite community transmission. Essential services are maintained and quarantine measures are currently unnecessary. To help similar organizations, strategies are listed along three themes: sustaining essential services, preventing infection, and managing human and consumable resources.


2014 ◽  
Vol 39 (9) ◽  
pp. 1431-1438 ◽  
Author(s):  
Xiao-Yuan LUO ◽  
Shi-Kai SHAO ◽  
Xin-Ping GUAN ◽  
Yuan-Jie ZHAO

1989 ◽  
Vol 24 (3) ◽  
pp. 463-477
Author(s):  
Stephen G. Nutt

Abstract Based on discussions in workshop sessions, several recurring themes became evident with respect to the optimization and control of petroleum refinery wastewater treatment systems to achieve effective removal of toxic contaminants. It was apparent that statistical process control (SPC) techniques are finding more widespread use and have been found to be effective. However, the implementation of real-time process control strategies in petroleum refinery wastewater treatment systems is in its infancy. Considerable effort will need to be expended to demonstrate the practicality of on-line sensors, and the utility of automated process control in petroleum refinery wastewater treatment systems. This paper provides a summary of the discussions held at the workshop.


Author(s):  
Ivan Herreros

This chapter discusses basic concepts from control theory and machine learning to facilitate a formal understanding of animal learning and motor control. It first distinguishes between feedback and feed-forward control strategies, and later introduces the classification of machine learning applications into supervised, unsupervised, and reinforcement learning problems. Next, it links these concepts with their counterparts in the domain of the psychology of animal learning, highlighting the analogies between supervised learning and classical conditioning, reinforcement learning and operant conditioning, and between unsupervised and perceptual learning. Additionally, it interprets innate and acquired actions from the standpoint of feedback vs anticipatory and adaptive control. Finally, it argues how this framework of translating knowledge between formal and biological disciplines can serve us to not only structure and advance our understanding of brain function but also enrich engineering solutions at the level of robot learning and control with insights coming from biology.


Water Policy ◽  
2014 ◽  
Vol 17 (3) ◽  
pp. 423-440 ◽  
Author(s):  
Lei Wu ◽  
Tong Qi ◽  
Dan Li ◽  
Huijuan Yang ◽  
Guoqing Liu ◽  
...  

The surface water of 10 major river systems across China has been under intermediate pollution with striking eutrophication problems in major lakes (reservoirs). More data from the Ministry of Environmental Protection of China showed that underground water in 57% of monitoring sites across Chinese cities was polluted or extremely polluted. Rural water pollution, the rising number of incidents of industrial pollution, outdated sewerage systems, and the overuse of pesticides and chemical fertilizers also endanger the health of rural inhabitants in China. Nearly 0.2 billion rural residents could not use drinking water in accordance with the national standard, and there were reports of ‘cancer villages' and food-borne diseases (cancer village refers to a village where a certain proportion of its inhabitants suffer from the same kind of cancer or where there is a hike in cancer incidence in that area). This study aims to raise awareness of the prevention and control of water pollution and to propose a set of national research and policy initiatives for the future safety of the water environment in China.


Sign in / Sign up

Export Citation Format

Share Document