Fluid Matters

Author(s):  
Aletheia Aida

Water interactions with building materials are addressed for major material groups including natural materials, non-technical ceramics, technical ceramics, metals, polymers, elastomers, and foams. Water quantities and qualities are identified across the life-cycle stages of building materials from sourcing and extraction, manufacturing, construction installation, operation and maintenance, and recyclability. With background information on the water cycle and physiochemistry properties, chemical interactions of building materials are highlighted to demonstrate the range of environmental impacts that building materials have upon water resources. Water consumption metrics are also correlated to the energy footprints of building material production and manufacturing processes. Various water impact calculation methods are referenced, and an overall assessment theorem is introduced for calculating the embodied water footprint of building materials. Example sum totals are indicated for each major material group in a comparative sourcing-to-operation framework.

2020 ◽  
Vol 12 (18) ◽  
pp. 7468
Author(s):  
José Pedro Carvalho ◽  
Ismael Alecrim ◽  
Luís Bragança ◽  
Ricardo Mateus

With the increasing concerns about building environmental impacts, building information modelling (BIM) has been used to perform different kinds of sustainability analysis. Among the most popular are the life cycle assessment (LCA) and building sustainability assessment (BSA). However, the integration of BIM-based LCA in BSA methods has not been adequately explored yet. This study addresses the relation between LCA and BSA within the BIM context for the Portuguese context. By performing an LCA for a Portuguese case study, a set of sustainability criteria from SBTool were simultaneous assessed during the process. The possibility of integrating BIM-based LCA into BSA methods can include more life cycle stages in the sustainability assessment and allow for normalising and producing more comparable results. BIM automates and connects different stages of the design process and provides information for multi-disciplinary data storage. However, there are still some constraints, such as different BSA/LCA databases and the necessity to manually introduce the embodied life cycle impacts of building materials. The scope of the BSA analysis can be expanded by integrating a complete LCA and be fostered by the support of BIM, effectively improving building sustainability according to local standards.


2021 ◽  
Vol 13 (14) ◽  
pp. 7676
Author(s):  
Jaime A. Mesa ◽  
Carlos E. Fúquene ◽  
Aníbal Maury-Ramírez

Life Cycle Assessment (LCA) is considered an innovative tool to analyze environmental impacts to make decisions aimed at improving the environmental performance of building materials and construction processes throughout different life cycle stages, including design, construction, use, operation, and end-of-life (EOL). Therefore, during the last two decades, interest in applying this tool in the construction field has increased, and the number of articles and studies has risen exponentially. However, there is a lack of consolidated studies that provide insights into the implementation of LCA on construction and demolition waste (C&DW). To fill this research gap, this study presents a literature review analysis to consolidate the most relevant topics and issues in the research field of C&DW materials and how LCA has been implemented during the last two decades. A systematic literature search was performed following the PRISMA method: analysis of selected works is based on bibliometric and content-based approaches. As a result, the study characterized 150 selected works in terms of the evolution of articles per year, geographical distribution, most relevant research centers, and featured sources. In addition, this study highlights research gaps in terms of methodological and design tools to improve LCA analysis, indicators, and connection to new trending concepts, such as circular economy and industry 4.0.


2007 ◽  
Vol 539-543 ◽  
pp. 2339-2344
Author(s):  
Toshio Fukushima

Ecomaterial-type building materials are classified based upon 6 row×8 column eco-life-cycle matrix table combining 8 life-cycle stages of resources gathering, transportation, production, assembly/construction, in-service/maintenance and modernization, demolition, recycle/reuse/reproduction, and reduce/final waste with six eco-balance evaluation items of long service life, resources circulation, reduction of harmful substances, resources and environmental capacities, materials efficiency ,and health safety. Evaluation indicators other than life cycle inventory (LCI) are shown as methods of ecobalance performance. In each life stage, each ecomaterial is evaluated as radar chart by 5 step indices by six eco-balance evaluation item (multi eco-indicators).


2019 ◽  
Vol 0 (3) ◽  
pp. 53-60 ◽  
Author(s):  
T.Yu. Altufyeva ◽  
◽  
P.A. Ivanov ◽  
G.R. Sakhapova ◽  
◽  
...  

2009 ◽  
Vol 66 (1) ◽  
Author(s):  
Susana Gómez-González ◽  
Lohengrin A Cavieres ◽  
Patricio Torres ◽  
Cristian Torres-Díaz

Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 803
Author(s):  
Winnie Gerbens-Leenes ◽  
Markus Berger ◽  
John Anthony Allan

Considering that 4 billion people are living in water-stressed regions and that global water consumption is predicted to increase continuously [...]


Author(s):  
Magnus Sparrevik ◽  
Luitzen de Boer ◽  
Ottar Michelsen ◽  
Christofer Skaar ◽  
Haley Knudson ◽  
...  

AbstractThe construction sector is progressively becoming more circular by reducing waste, re-using building materials and adopting regenerative solutions for energy production and biodiversity protection. The implications of circularity on construction activities are complex and require the careful evaluation of impacts to select the appropriate path forward. Evaluations of circular solutions and their environmental effectiveness are often performed based on various types of life cycle-based impact assessments. This paper uses systemic thinking to map and evaluate different impact assessment methodologies and their implications for a shift to more circular solutions. The following systemic levels are used to group the methodologies: product (material life cycle declarations and building assessments), organisation (certification and management schemes) and system (policies, standards and regulations). The results confirm that circular economy is integrated at all levels. However, development and structure are not coordinated or governed unidirectionally, but rather occur simultaneously at different levels. This recursive structure is positive if the methods are applied in the correct context, thus providing both autonomy and cohesion in decision making. Methods at lower systemic levels may then improve production processes and stimulate the market to create circular and innovative building solutions, whereas methods at higher systemic levels can be used, for example, by real estate builders, trade organisations and governments to create incentives for circular development and innovation in a broader perspective. Use of the performance methods correctly within an actor network is therefore crucial for successful and effective implementation of circular economy in the construction sector.


2021 ◽  
Vol 122 ◽  
pp. 107319
Author(s):  
Wei Chen ◽  
Jinglan Hong ◽  
Chengxin Wang ◽  
Lu Sun ◽  
Tianzuo Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document